Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Saravana M. Dhanasekaran is active.

Publication


Featured researches published by Saravana M. Dhanasekaran.


Nature | 2002

The polycomb group protein EZH2 is involved in progression of prostate cancer

Sooryanarayana Varambally; Saravana M. Dhanasekaran; Ming Zhou; Terrence R. Barrette; Chandan Kumar-Sinha; Martin G. Sanda; Debashis Ghosh; Kenneth J. Pienta; Richard George Antonius Bernardus Sewalt; Arie P. Otte; Mark A. Rubin; Arul M. Chinnaiyan

Prostate cancer is a leading cause of cancer-related death in males and is second only to lung cancer. Although effective surgical and radiation treatments exist for clinically localized prostate cancer, metastatic prostate cancer remains essentially incurable. Here we show, through gene expression profiling, that the polycomb group protein enhancer of zeste homolog 2 (EZH2) is overexpressed in hormone-refractory, metastatic prostate cancer. Small interfering RNA (siRNA) duplexes targeted against EZH2 reduce the amounts of EZH2 protein present in prostate cells and also inhibit cell proliferation in vitro. Ectopic expression of EZH2 in prostate cells induces transcriptional repression of a specific cohort of genes. Gene silencing mediated by EZH2 requires the SET domain and is attenuated by inhibiting histone deacetylase activity. Amounts of both EZH2 messenger RNA and EZH2 protein are increased in metastatic prostate cancer; in addition, clinically localized prostate cancers that express higher concentrations of EZH2 show a poorer prognosis. Thus, dysregulated expression of EZH2 may be involved in the progression of prostate cancer, as well as being a marker that distinguishes indolent prostate cancer from those at risk of lethal progression.


Nature | 2012

The mutational landscape of lethal castration-resistant prostate cancer

Catherine S. Grasso; Yi Mi Wu; Dan R. Robinson; Xuhong Cao; Saravana M. Dhanasekaran; Amjad P. Khan; Michael J. Quist; Xiaojun Jing; Robert J. Lonigro; J. Chad Brenner; Irfan A. Asangani; Bushra Ateeq; Sang Y. Chun; Javed Siddiqui; Lee Sam; Matt Anstett; Rohit Mehra; John R. Prensner; Nallasivam Palanisamy; Gregory A Ryslik; Fabio Vandin; Benjamin J. Raphael; Lakshmi P. Kunju; Daniel R. Rhodes; Kenneth J. Pienta; Arul M. Chinnaiyan; Scott A. Tomlins

Characterization of the prostate cancer transcriptome and genome has identified chromosomal rearrangements and copy number gains and losses, including ETS gene family fusions, PTEN loss and androgen receptor (AR) amplification, which drive prostate cancer development and progression to lethal, metastatic castration-resistant prostate cancer (CRPC). However, less is known about the role of mutations. Here we sequenced the exomes of 50 lethal, heavily pre-treated metastatic CRPCs obtained at rapid autopsy (including three different foci from the same patient) and 11 treatment-naive, high-grade localized prostate cancers. We identified low overall mutation rates even in heavily treated CRPCs (2.00 per megabase) and confirmed the monoclonal origin of lethal CRPC. Integrating exome copy number analysis identified disruptions of CHD1 that define a subtype of ETS gene family fusion-negative prostate cancer. Similarly, we demonstrate that ETS2, which is deleted in approximately one-third of CRPCs (commonly through TMPRSS2:ERG fusions), is also deregulated through mutation. Furthermore, we identified recurrent mutations in multiple chromatin- and histone-modifying genes, including MLL2 (mutated in 8.6% of prostate cancers), and demonstrate interaction of the MLL complex with the AR, which is required for AR-mediated signalling. We also identified novel recurrent mutations in the AR collaborating factor FOXA1, which is mutated in 5 of 147 (3.4%) prostate cancers (both untreated localized prostate cancer and CRPC), and showed that mutated FOXA1 represses androgen signalling and increases tumour growth. Proteins that physically interact with the AR, such as the ERG gene fusion product, FOXA1, MLL2, UTX (also known as KDM6A) and ASXL1 were found to be mutated in CRPC. In summary, we describe the mutational landscape of a heavily treated metastatic cancer, identify novel mechanisms of AR signalling deregulated in prostate cancer, and prioritize candidates for future study.


Nature | 2007

Distinct classes of chromosomal rearrangements create oncogenic ETS gene fusions in prostate cancer.

Scott A. Tomlins; Bharathi Laxman; Saravana M. Dhanasekaran; Beth E. Helgeson; Xuhong Cao; David S. Morris; Anjana Menon; Xiaojun Jing; Qi Cao; Bo Han; Jindan Yu; Lei Wang; James E. Montie; Mark A. Rubin; Kenneth J. Pienta; Diane Roulston; Rajal B. Shah; Sooryanarayana Varambally; Rohit Mehra; Arul M. Chinnaiyan

Recently, we identified recurrent gene fusions involving the 5′ untranslated region of the androgen-regulated gene TMPRSS2 and the ETS (E26 transformation-specific) family genes ERG, ETV1 or ETV4 in most prostate cancers. Whereas TMPRSS2–ERG fusions are predominant, fewer TMPRSS2–ETV1 cases have been identified than expected on the basis of the frequency of high (outlier) expression of ETV1 (refs 3–13). Here we explore the mechanism of ETV1 outlier expression in human prostate tumours and prostate cancer cell lines. We identified previously unknown 5′ fusion partners in prostate tumours with ETV1 outlier expression, including untranslated regions from a prostate-specific androgen-induced gene (SLC45A3) and an endogenous retroviral element (HERV-K_22q11.23), a prostate-specific androgen-repressed gene (C15orf21), and a strongly expressed housekeeping gene (HNRPA2B1). To study aberrant activation of ETV1, we identified two prostate cancer cell lines, LNCaP and MDA-PCa 2B, that had ETV1 outlier expression. Through distinct mechanisms, the entire ETV1 locus (7p21) is rearranged to a 1.5-megabase prostate-specific region at 14q13.3–14q21.1 in both LNCaP cells (cryptic insertion) and MDA-PCa 2B cells (balanced translocation). Because the common factor of these rearrangements is aberrant ETV1 overexpression, we recapitulated this event in vitro and in vivo, demonstrating that ETV1 overexpression in benign prostate cells and in the mouse prostate confers neoplastic phenotypes. Identification of distinct classes of ETS gene rearrangements demonstrates that dormant oncogenes can be activated in prostate cancer by juxtaposition to tissue-specific or ubiquitously active genomic loci. Subversion of active genomic regulatory elements may serve as a more generalized mechanism for carcinoma development. Furthermore, the identification of androgen-repressed and insensitive 5′ fusion partners may have implications for the anti-androgen treatment of advanced prostate cancer.


Nature Genetics | 2015

The Landscape of Long Noncoding RNAs in the Human Transcriptome

Matthew K. Iyer; Yashar S. Niknafs; Rohit Malik; Udit Singhal; Anirban Sahu; Yasuyuki Hosono; Terrence R. Barrette; John R. Prensner; Joseph R. Evans; Shuang Zhao; Anton Poliakov; Xuhong Cao; Saravana M. Dhanasekaran; Yi Mi Wu; Dan R. Robinson; David G. Beer; Felix Y. Feng; Hariharan K. Iyer; Arul M. Chinnaiyan

Long noncoding RNAs (lncRNAs) are emerging as important regulators of tissue physiology and disease processes including cancer. To delineate genome-wide lncRNA expression, we curated 7,256 RNA sequencing (RNA-seq) libraries from tumors, normal tissues and cell lines comprising over 43 Tb of sequence from 25 independent studies. We applied ab initio assembly methodology to this data set, yielding a consensus human transcriptome of 91,013 expressed genes. Over 68% (58,648) of genes were classified as lncRNAs, of which 79% were previously unannotated. About 1% (597) of the lncRNAs harbored ultraconserved elements, and 7% (3,900) overlapped disease-associated SNPs. To prioritize lineage-specific, disease-associated lncRNA expression, we employed non-parametric differential expression testing and nominated 7,942 lineage- or cancer-associated lncRNA genes. The lncRNA landscape characterized here may shed light on normal biology and cancer pathogenesis and may be valuable for future biomarker development.


Nature Biotechnology | 2011

Transcriptome sequencing across a prostate cancer cohort identifies PCAT-1 , an unannotated lincRNA implicated in disease progression

John R. Prensner; Matthew K. Iyer; O. Alejandro Balbin; Saravana M. Dhanasekaran; Qi Cao; J. Chad Brenner; Bharathi Laxman; Irfan A. Asangani; Catherine S. Grasso; Hal D. Kominsky; Xuhong Cao; Xiaojun Jing; Xiaoju Wang; Javed Siddiqui; John T. Wei; Dan R. Robinson; Hari Iyer; Nallasivam Palanisamy; Christopher A. Maher; Arul M. Chinnaiyan

Noncoding RNAs (ncRNAs) are emerging as key molecules in human cancer, with the potential to serve as novel markers of disease and to reveal uncharacterized aspects of tumor biology. Here we discover 121 unannotated prostate cancer–associated ncRNA transcripts (PCATs) by ab initio assembly of high-throughput sequencing of polyA+ RNA (RNA-Seq) from a cohort of 102 prostate tissues and cells lines. We characterized one ncRNA, PCAT-1, as a prostate-specific regulator of cell proliferation and show that it is a target of the Polycomb Repressive Complex 2 (PRC2). We further found that patterns of PCAT-1 and PRC2 expression stratified patient tissues into molecular subtypes distinguished by expression signatures of PCAT-1–repressed target genes. Taken together, our findings suggest that PCAT-1 is a transcriptional repressor implicated in a subset of prostate cancer patients. These findings establish the utility of RNA-Seq to identify disease-associated ncRNAs that may improve the stratification of cancer subtypes.High-throughput sequencing of polyA+ RNA (RNA-Seq) in human cancer shows remarkable potential to identify both novel markers of disease and uncharacterized aspects of tumor biology, particularly non-coding RNA (ncRNA) species. We employed RNA-Seq on a cohort of 102 prostate tissues and cells lines and performed ab initio transcriptome assembly to discover unannotated ncRNAs. We nominated 121 such Prostate Cancer Associated Transcripts (PCATs) with cancer-specific expression patterns. Among these, we characterized PCAT-1 as a novel prostate-specific regulator of cell proliferation and target of the Polycomb Repressive Complex 2 (PRC2). We further found that high PCAT-1 and PRC2 expression stratified patient tissues into molecular subtypes distinguished by expression signatures of PCAT-1-repressed target genes. Taken together, the findings presented herein identify PCAT-1 as a novel transcriptional repressor implicated in subset of prostate cancer patients. These findings establish the utility of RNA-Seq to identify disease-associated ncRNAs that may improve the stratification of cancer subtypes.


Cancer Cell | 2010

An Integrated Network of Androgen Receptor, Polycomb, and TMPRSS2-ERG Gene Fusions in Prostate Cancer Progression

Jindan Yu; Jianjun Yu; Ram Shankar Mani; Qi Cao; Chad Brenner; Xuhong Cao; Xiaoju Wang; Longtao Wu; James Li; Ming Hu; Yusong Gong; Hong Cheng; Bharathi Laxman; Adaikkalam Vellaichamy; Sunita Shankar; Yong Li; Saravana M. Dhanasekaran; Roger Morey; Terrence R. Barrette; Robert J. Lonigro; Scott A. Tomlins; Sooryanarayana Varambally; Zhaohui S. Qin; Arul M. Chinnaiyan

Chromosomal rearrangements fusing the androgen-regulated gene TMPRSS2 to the oncogenic ETS transcription factor ERG occur in approximately 50% of prostate cancers, but how the fusion products regulate prostate cancer remains unclear. Using chromatin immunoprecipitation coupled with massively parallel sequencing, we found that ERG disrupts androgen receptor (AR) signaling by inhibiting AR expression, binding to and inhibiting AR activity at gene-specific loci, and inducing repressive epigenetic programs via direct activation of the H3K27 methyltransferase EZH2, a Polycomb group protein. These findings provide a working model in which TMPRSS2-ERG plays a critical role in cancer progression by disrupting lineage-specific differentiation of the prostate and potentiating the EZH2-mediated dedifferentiation program.


Oncogene | 2008

Repression of E-cadherin by the polycomb group protein EZH2 in cancer.

Qi Cao; Jindan Yu; Saravana M. Dhanasekaran; Joungmok Kim; Ram Shankar Mani; Scott A. Tomlins; Rohit Mehra; Bharathi Laxman; Xuhong Cao; Celina G. Kleer; Sooryanarayana Varambally; Arul M. Chinnaiyan

Enhancer of zeste homolog 2 (EZH2) is a critical component of the polycomb-repressive complex 2 (PRC2), which is involved in gene silencing and histone H3 lysine 27 methylation. EZH2 has a master regulatory function in controlling such processes as stem cell differentiation, cell proliferation, early embryogenesis and X chromosome inactivation. Although benign epithelial cells express very low levels of EZH2, increased levels of EZH2 have been observed in aggressive solid tumors such as those of the prostate, breast and bladder. The mechanism by which EZH2 mediates tumor aggressiveness is unclear. Here, we demonstrate that EZH2 mediates transcriptional silencing of the tumor suppressor gene E-cadherin by trimethylation of H3 lysine 27. Histone deacetylase inhibitors can prevent EZH2-mediated repression of E-cadherin and attenuate cell invasion, suggesting a possible mechanism that may be useful for the development of therapeutic treatments. Taken together, these observations provide a novel mechanism of E-cadherin regulation and establish a functional link between dysregulation of EZH2 and repression of E-cadherin during cancer progression.


Nature Genetics | 2013

The long noncoding RNA SChLAP1 promotes aggressive prostate cancer and antagonizes the SWI/SNF complex

John R. Prensner; Matthew K. Iyer; Anirban Sahu; Irfan A. Asangani; Qi Cao; Lalit Patel; Ismael A. Vergara; Elai Davicioni; Nicholas Erho; Mercedeh Ghadessi; Robert B. Jenkins; Timothy J. Triche; Rohit Malik; Rachel Bedenis; Natalie McGregor; Teng Ma; Wei Chen; Sumin Han; Xiaojun Jing; Xuhong Cao; Xiaoju Wang; Benjamin Chandler; Wei Yan; Javed Siddiqui; Lakshmi P. Kunju; Saravana M. Dhanasekaran; Kenneth J. Pienta; Felix Y. Feng; Arul M. Chinnaiyan

Prostate cancers remain indolent in the majority of individuals but behave aggressively in a minority. The molecular basis for this clinical heterogeneity remains incompletely understood. Here we characterize a long noncoding RNA termed SChLAP1 (second chromosome locus associated with prostate-1; also called LINC00913) that is overexpressed in a subset of prostate cancers. SChLAP1 levels independently predict poor outcomes, including metastasis and prostate cancer–specific mortality. In vitro and in vivo gain-of-function and loss-of-function experiments indicate that SChLAP1 is critical for cancer cell invasiveness and metastasis. Mechanistically, SChLAP1 antagonizes the genome-wide localization and regulatory functions of the SWI/SNF chromatin-modifying complex. These results suggest that SChLAP1 contributes to the development of lethal cancer at least in part by antagonizing the tumor-suppressive functions of the SWI/SNF complex.


American Journal of Pathology | 2004

FIZZ1 Stimulation of Myofibroblast Differentiation

Tianju Liu; Saravana M. Dhanasekaran; Hong Jin; Biao Hu; Scott A. Tomlins; Arul M. Chinnaiyan; Sem H. Phan

Bleomycin-induced pulmonary fibrosis is characterized by inflammation, emergence of myofibroblasts, and deposition of extracellular matrix. In an attempt to identify genes that may be involved in fibrosis, we used a 10,000 element (10 K) rat cDNA microarray to analyze the lung gene expression profiles in this model in the rat. Cluster analysis showed 628 genes were more than or equal to twofold up- or down-regulated, many of which were known to be involved in fibrosis. However, the most dramatic increase was observed with FIZZ1 (found in inflammatory zone; also known as RELM-alpha or resistin-like molecule-alpha), which was induced 17-fold to approximately 25-fold at the peak of expression. In situ hybridization analysis revealed FIZZ1 expression to localize primarily to alveolar and airway epithelium, which was confirmed in vitro by analysis of isolated type II alveolar epithelial cells. However FIZZ1 expression was not detected in isolated lung fibroblasts. Co-culture of FIZZ1-expressing type II cells with fibroblasts stimulated alpha-smooth muscle actin and type I collagen expression independent of transforming growth factor-beta. Transfection of a FIZZ1-expressing plasmid into fibroblasts or treatment with glutathione S-transferase-FIZZ1 fusion protein stimulated alpha-smooth muscle actin and collagen I production. These results suggest a novel role for FIZZ1 in myofibroblast differentiation in pulmonary fibrosis.


Cancer Research | 2009

Treatment-Dependent Androgen Receptor Mutations in Prostate Cancer Exploit Multiple Mechanisms to Evade Therapy

Mara P. Steinkamp; Orla A. O'Mahony; Michele Brogley; Haniya Rehman; Elizabeth W. LaPensee; Saravana M. Dhanasekaran; Matthias D. Hofer; Rainer Kuefer; Arul M. Chinnaiyan; Mark A. Rubin; Kenneth J. Pienta; Diane M. Robins

Mutations in the androgen receptor (AR) that enable activation by antiandrogens occur in hormone-refractory prostate cancer, suggesting that mutant ARs are selected by treatment. To validate this hypothesis, we compared AR variants in metastases obtained by rapid autopsy of patients treated with flutamide or bicalutamide, or by excision of lymph node metastases from hormone-naïve patients. AR mutations occurred at low levels in all specimens, reflecting genetic heterogeneity of prostate cancer. Base changes recurring in multiple samples or multiple times per sample were considered putative selected mutations. Of 26 recurring missense mutations, most in the NH(2)-terminal domain (NTD) occurred in multiple tumors, whereas those in the ligand binding domain (LBD) were case specific. Hormone-naïve tumors had few recurring mutations and none in the LBD. Several AR variants were assessed for mechanisms that might underlie treatment resistance. Selection was evident for the promiscuous receptor AR-V716M, which dominated three metastases from one flutamide-treated patient. For the inactive cytoplasmically restricted splice variant AR23, coexpression with AR enhanced ligand response, supporting a decoy function. A novel NTD mutation, W435L, in a motif involved in intramolecular interaction influenced promoter-selective, cell-dependent transactivation. AR-E255K, mutated in a domain that interacts with an E3 ubiquitin ligase, led to increased protein stability and nuclear localization in the absence of ligand. Thus, treatment with antiandrogens selects for gain-of-function AR mutations with altered stability, promoter preference, or ligand specificity. These processes reveal multiple targets for effective therapies regardless of AR mutation.

Collaboration


Dive into the Saravana M. Dhanasekaran's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xuhong Cao

University of Michigan

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sooryanarayana Varambally

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Qi Cao

University of Michigan

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge