Sardar Alam Cheema
University of Agriculture, Faisalabad
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sardar Alam Cheema.
Journal of Hazardous Materials | 2010
Xianjin Tang; Chaofeng Shen; Dezhi Shi; Sardar Alam Cheema; Muhammad Imran Khan; Congkai Zhang; Yingxu Chen
The present study was conducted to investigate the levels and sources of heavy metals (Cu, Cr, Cd, Pb, Zn, Hg and As) and persistent organic compounds including polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) in soils taken from Wenling, an emerging e-waste recycling city in Taizhou, China. The results suggested that most heavy metals exceeded the respective Grade II value of soil quality standards from State Environmental Protection Administration of China and also exceeded the Dutch optimum values. Total PAHs in soil ranged from 371.8 to 1231.2 microg/kg, and relatively higher PAHs concentrations were found in soils taken from simple household workshops. PCBs were detectable in all samples with total concentrations ranging from 52.0 to 5789.5 microg/kg, which were 2.1-232.5 times higher than that from the reference site (24.9 microg/kg). Results of this study suggested soil in the Wenling e-waste recycling area were heavily contaminated by heavy metals, PAHs and PCBs. Furthermore, compared with large-scale plants, simple household workshops contributed more heavy metals, PAHs and PCBs pollution to the soil environment, indicating that soil contamination from e-waste recycling in simple household workshops should be given more attention.
Journal of Hazardous Materials | 2010
Sardar Alam Cheema; Muhammad Imran Khan; Chaofeng Shen; Xianjin Tang; Muhammad Farooq; Lei Chen; Congkai Zhang; Yingxu Chen
The present study was conducted to investigate the capability of four plant species (tall fescue, ryegrass, alfalfa, and rape seed) grown alone and in combination to the degradation of phenanthrene and pyrene (polycyclic aromatic hydrocarbons, PAHs) in spiked soil. After 65 days of plant growth, plant biomass, dehydrogenase activity, water-soluble phenolic (WSP) compounds, plant uptake and accumulation and residual concentrations of phenanthrene and pyrene were determined. Our results showed that presence of vegetation significantly enhanced the dissipation of phenanthrene and pyrene from contaminated soils. Higher degradation rates of PAHs were observed in the combined plant cultivation (98.3-99.2% phenanthrene and 88.1-95.7% pyrene) compared to the single plant cultivation (97.0-98.0% phenanthrene and 79.8-86.0% pyrene). Contribution of direct plant uptake and accumulation of phenanthrene and pyrene was very low compared to the plant enhanced dissipation. By contrast, plant-promoted biodegradation was the predominant contribution to the remediation enhancement. The correlation analysis indicates a negative relation between biological activities (dehydrogenase activity and WSP compounds) and residual concentrations of phenanthrene and pyrene in planted soils. Our results suggest that phytoremediation could be a feasible choice for PAHs contaminated soil. Moreover, the combined plant cultivation has potential to enhance the process.
Journal of Hazardous Materials | 2009
Sardar Alam Cheema; Muhammad Imran Khan; Xianjin Tang; Congkai Zhang; Chaofeng Shen; Zaffar Malik; Shafaqat Ali; Jianjun Yang; Kaili Shen; Xincai Chen; Yingxu Chen
A greenhouse experiment was conducted with varying concentrations of phenanthrene (11-344 mg kg(-1)) and pyrene (15-335 mg kg(-1)) spiked in the soil to evaluate the phytoremediation of PAHs contaminated soil using tall fescue (Festuca arundinacea). After 65-day of tall fescue growth, plant biomass, microbial viable counts, dehydrogenase activity, water-soluble phenolic compounds, phenanthrene and pyrene residual concentrations and removal percentages were determined. The results showed that target PAHs (phenanthrene and pyrene) did not affect plant biomass at lower concentrations but a reduced biomass (only 53.5% of shoot and 29.7% of root compared to control) was observed at higher concentrations. Higher biological activities (microbial viable counts, water-soluble phenolic compounds, dehydrogenase activity) and PAHs degradation rates were detected in planted soils than unplanted controls. After harvest, 91.7-97.8% of phenanthrene and 70.8-90.0% of pyrene had been degraded in the planted soils, which were 1.88-3.19% and 8.85-20.69% larger than those in corresponding unplanted soils. This enhanced dissipation of target PAHs in planted soils might be derived from increased biological activity in the rhizosphere. The results of the present study suggest that the presence of tall fescue roots were effective in promoting the phytoremediation of PAHs contaminated soil.
Journal of Hazardous Materials | 2009
M. K. Daud; M. T. Variath; Shafaqat Ali; Ullah Najeeb; Muhammad Jamil; Y. Hayat; Muhammad Dawood; Muhammad Imran Khan; Malik Zaffar; Sardar Alam Cheema; X.H. Tong; Shuijin Zhu
The present study describes cadmium-induced alterations in the leaves as well as at the whole plant level in two transgenic cotton cultivars (BR001 and GK30) and their wild relative (Coker 312) using both ultramorphological and physiological indices. With elevated levels of Cd (i.e. 10, 100, 1000 microM), the mean lengths of root, stem and leaf and leaf width as well as their fresh and dry biomasses linearly decreased over their respective controls. Moreover, root, stem and leaf water absorption capacities progressively stimulated, which were high in leaves followed by roots and stems. BR001 accumulated more cadmium followed by GK30 and Coker 312. Root and shoot cadmium uptakes were significantly and directly correlated with each other as well as with leaf, stem and root water absorption capacities. The ultrastructural modifications in leaf mesophyll cells were triggered with increase in Cd stress regime. They were more obvious in BR001 followed by GK30 and Coker 312. Changes in morphology of chloroplast, increase in number and size of starch grains as well as increase in number of plastoglobuli were the noticed qualitative effects of Cd on photosynthetic organ. Cd in the form of electron dense granules could be seen inside the vacuoles and attached to the cell walls in all these cultivars. From the present experiment, it can be well established that both apoplastic and symplastic bindings are involved in Cd detoxification in these cultivars. Absence of tonoplast invagination reveals that Cd toxic levels did not cause water stress in any cultivars. Additionally, these cultivars possess differential capabilities towards Cd accumulation and its sequestration.
Journal of Hazardous Materials | 2009
Chaofeng Shen; Xianjin Tang; Sardar Alam Cheema; Congkai Zhang; Muhammad Imran Khan; Fang Liang; Xincai Chen; Youfeng Zhu; Qi Lin; Yingxu Chen
The crude recycling of electronic and electric waste (e-waste) is now creating soil pollution problems with organic compounds such as polychlorinated biphenyls (PCBs). The present study aimed to compare the phytoremediation potential of four plant species (rice, alfalfa, ryegrass and tall fescue) for PCBs contaminated soil from Taizhou city, one of the largest e-waste recycling centers in China. In addition, the enhanced effects of randomly methylated-beta-cyclodextrins (RAMEB) on PCBs phytoremediation potential were evaluated. Higher PCBs removal percentages of 25.6-28.5% in rhizosphere soil were observed after 120 days, compared with those of the non-rhizosphere (10.4-16.9%) and unplanted controls (7.3%). The average PCBs removal percentages of four plant species increased from 26.9% to 37.1% in the rhizosphere soil with addition of RAMEB. Meanwhile, relatively high microbial counts and dehydrogenase activity were detected in planted soils and a stimulatory effect by RAMEB addition was found. The present study indicated that all the plant candidates were feasible for phytoremediation of PCBs contaminated soil from the e-waste recycling area, and tall fescue with RAMEB amendment seemed as a promising remediation strategy. High PCBs removal percentage was due to the increased PCBs bioavailability as well as biostimulation of microbial communities after plantation and RAMEB addition.
Journal of Hazardous Materials | 2010
Chaofeng Shen; Xianjin Tang; Jun Yao; Dezhi Shi; Jie Fang; Muhammad Imran Khan; Sardar Alam Cheema; Yingxu Chen
Polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) were analyzed in bottom ash from municipal solid waste (MSW) incineration in six cities in Zhejiang province, where one-fourth of the MSW incinerators of China are located. Total PAH contents varied from 2222.53 to 6883.91 microg/kg. The patterns of PAHs were found to be very similar in all the samples, dominated by three-ring and four-ring PAHs. Total PCB concentrations in bottom ash ranged from 1.00 to 1.31 microg/kg, while the coplanar PCBs in the bottom ash were in the range of 0.08-0.52 microg/kg. Among PCB congeners, low chlorinated PCBs contributed to the majority of total PCBs. Generally, PAH concentrations in cities with fluidized bed incinerator were less than those in cities with grate furnace incinerator. PAH and PCB levels were affected by both plastic content in MSW incinerator feed and combustion efficiency. However, further study is required to investigate the effect of these two variables deeply, as well as other influencing factors.
Journal of Environmental Monitoring | 2010
Yingxu Chen; Xianjin Tang; Sardar Alam Cheema; Wenli Liu; Chaofeng Shen
The objective in the first phase of this study was to screen four plant species (alfalfa, ryegrass, tall fescue and rice) for phytoremediation of aged polychlorinated biphenyl (PCB)-contaminated soil from an electronic and electric waste (e-waste) recycling site. Glucose, biphenyl and three surfactants (TritonX-100, randomly methylated-beta-cyclodextrins and beta-cyclodextrin) were used to enhance the phytoremediation process. During the second phase, the focus was rhizosphere characteristics and plant uptake to investigate the mechanism of PCB removal from soil. In the first phase, all the tested plant species showed a significantly greater PCB removal percentage compared to the unplanted controls, while different amendments showed no significant difference. The most effective plant (ryegrass) combined with beta-cyclodextrin was selected for further studies. During the rhizosphere characteristics and plant uptake study, the highest PCB removal percentage (38.1%) was observed in the ryegrass planted soil when beta-cyclodextrin was amended at 1.0% (w/w). The presence of plants significantly increased the biological activity (microbial counts and enzyme activity) of both beta-cyclodextrin amended and non-amended soils. Higher levels of PCB removal were closely related to greater microbial counts and soil enzyme activities by correlation analysis. After 120 days of plant growth, ryegrass accumulated 708.7-820.1 ng PCBs/g in the root and 71.7-110.8 ng PCBs/g in the shoot, resulting in about 0.08% PCBs removal from soil. It was concluded that high PCB degradation was due to the increased PCB bioavailability as well as biostimulation of microbial communities after plantation and beta-cyclodextrin addition. Furthermore, results suggested that PCB removal was mainly contributed by microbial degradation rather than plant uptake or abiotic dissipation.
Journal of Environmental Science and Health Part A-toxic\/hazardous Substances & Environmental Engineering | 2010
Xianjin Tang; Chaofeng Shen; Sardar Alam Cheema; Lei Chen; Xi Xiao; Congkai Zhang; Wenli Liu; Feng Li; Yingxu Chen
The present study investigated the levels, distributions, profiles and possible sources of polycyclic aromatic hydrocarbons (PAHs) in agricultural soils around Zeguo, an emerging e-waste recycling town in Taizhou area, China. Concentrations of sixteen USEPA priority PAHs and soil organic matter were analyzed in 59 agricultural soil samples. The total PAH concentrations ranged from 262.6 to 3,420.2 μg/kg, with the average values in a gradually descending order: agricultural soil near e-waste recycling plants and workshops (1,336.0 μg/kg) > agricultural soil in villages with open burning and e-waste recycling activities (945.8 μg/kg) > agricultural soil in other villages (466.5 μg/kg). Analysis of the distribution patterns of the PAHs showed that phenanthrene, anthracene, fluoranthene and pyrene were the dominant species. The significant correlations among individual, low-molecular-weight (LMW), high-molecular-weight (HMW) and total PAHs and the very similar PAH profiles in the three sampling areas indicated that the PAHs might have come from similar sources. The ratios of Anthracene to sum of Anthracene and Phenanthrene concentrations (Ant/(Ant+Phe)) and fluoranthene to sum of fluoranthene and pyrene concentrations (Flt/(Flt+Pyr)) were calculated and principal component analysis (PCA) was performed and the results suggested that an anthropogenic source such as the combustion of a petroleum product or coal during the e-waste recycling process seemed to be the main source of PAHs in the Zeguo agricultural soil. In conclusion, soils taken from Zeguo agricultural areas were considered to be heavily polluted, and the emerging e-waste recycling activities had definite effects on PAH soil concentrations.
Plant Physiology and Biochemistry | 2016
Babar Shahzad; Mohsin Tanveer; Waseem Hassan; Adnan Noor Shah; Shakeel Ahmad Anjum; Sardar Alam Cheema; Iftikhar Ali
Lithium (Li) is a naturally occurring element; however, it is one of the non-essential metals for life. Lithium is becoming a serious matter of discussion for the people who do research on trace metals and environmental toxicity in plants. Due to limited information available regarding its mobility from soil to plants, the adverse effects of Li toxicity to plants are still unclear. This article briefly discusses issues around Li, its role and its essentiality in plants and research directions that may assist in inter-disciplinary studies to evaluate the importance of Lis toxicity. Further, potential remediation approaches will also be highlighted in this review. Briefly, Li influenced the growth of plants in both stimulation and reduction ways, depending on the concentration of Li in growth medium. On the negative side, Li reduces the plant growth by interrupting numerous physiological processes and altering metabolism in plant. The contamination of soil by Li is becoming a serious problem, which might be a threat for crop production in the near future. Additionally, lack of considerable information about the tolerance mechanisms of plants further intensifies the situation. Therefore, future research should emphasize in finding prominent and approachable solutions to minimize the entry of Li from its sources (especially from Li batteries) into the soil and food chain.
Ecotoxicology and Environmental Safety | 2018
Babar Shahzad; Mohsin Tanveer; Zhao Che; Abdul Rehman; Sardar Alam Cheema; Anket Sharma; He Song; Shams ur Rehman; Dong Zhaorong
Industrialization and urbanization have posed serious threats to the environment. Excessive release of heavy metals from industrial effluents and overuse of pesticides in modern agriculture are limiting crop production by polluting environment and deteriorating food quality. Sustaining food quality under heavy metals and pesticide stress is crucial to meet the increasing demands for food. 24-Epibrassinolide (EBL), a ubiquitously occurring plant growth hormone shows great potential to alleviate heavy metals and pesticide stress in plants. This review sums up the potential role of EBL in ameliorating heavy metals and pesticide toxicity in plants extensively. EBL application increases plants overall growth, biomass accumulation and photosynthetic efficiency by the modulation of numerous biochemical and physiological processes under heavy metals and pesticide stress. In addition, EBL scavenges reactive oxygen species (ROS) by triggering the production of antioxidant enzymes such as SOD, CAT, POX etc. EBL also induces the production of proline and soluble proteins that helps in maintaining osmotic potential and osmo-protection under both heavy metals and pesticide stress. At the end, future needs of research about the application of 24-epibrassinolide have also been discussed.