Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sari Feld is active.

Publication


Featured researches published by Sari Feld.


Cancer Research | 2009

Structure-Function Approach Identifies a COOH-Terminal Domain That Mediates Heparanase Signaling

Liat Fux; Nir Feibish; Victoria Cohen-Kaplan; Svetlana Gingis-Velitski; Sari Feld; Chen Geffen; Israel Vlodavsky; Neta Ilan

Heparanase is an endo-beta-d-glucuronidase capable of cleaving heparan sulfate, activity that is strongly implicated in cellular invasion associated with tumor metastasis, angiogenesis, and inflammation. In addition, heparanase was noted to exert biological functions apparently independent of its enzymatic activity, enhancing the phosphorylation of selected protein kinases and inducing gene transcription. A predicted three-dimensional structure of constitutively active heparanase clearly delineates a TIM-barrel fold previously anticipated for the enzyme. Interestingly, the model also revealed the existence of a COOH-terminal domain (C-domain) that apparently is not an integral part of the TIM-barrel fold. We provide evidence that the C-domain is critical for heparanase enzymatic activity and secretion. Moreover, the C-domain was found to mediate nonenzymatic functions of heparanase, facilitating Akt phosphorylation, cell proliferation, and tumor xenograft progression. These findings support the notion that heparanase exerts enzymatic activity-independent functions, and identify, for the first time, a protein domain responsible for heparanase-mediated signaling. Inhibitors directed against the C-domain, combined with inhibitors of heparanase enzymatic activity, are expected to neutralize heparanase functions and to profoundly affect tumor growth, angiogenesis, and metastasis.


PLOS ONE | 2008

Heparanase Facilitates Cell Adhesion and Spreading by Clustering of Cell Surface Heparan Sulfate Proteoglycans

Flonia Levy-Adam; Sari Feld; Edith Suss-Toby; Israel Vlodavsky; Neta Ilan

Heparanase is a heparan sulfate (HS) degrading endoglycosidase participating in extracellular matrix degradation and remodeling. Apart of its well characterized enzymatic activity, heparanase was noted to exert also enzymatic-independent functions. Non-enzymatic activities of heparanase include enhanced adhesion of tumor-derived cells and primary T-cells. Attempting to identify functional domains of heparanase that would serve as targets for drug development, we have identified heparin binding domains of heparanase. A corresponding peptide (residues Lys158-Asp171, termed KKDC) was demonstrated to physically associate with heparin and HS, and to inhibit heparanase enzymatic activity. We hypothesized that the pro-adhesive properties of heparanase are mediated by its interaction with cell surface HS proteoglycans, and utilized the KKDC peptide to examine this possibility. We provide evidence that the KKDC peptide interacts with cell membrane HS, resulting in clustering of syndecan-1 and syndecan-4. We applied classical analysis of cell morphology, fluorescent and time-lapse microscopy and demonstrated that the KKDC peptide efficiently stimulates the adhesion and spreading of various cell types, mediated by PKC, Src, and the small GTPase Rac1. These results support, and further substantiate the notion that heparanase function is not limited to its enzymatic activity.


Journal of Biological Chemistry | 2010

Heparanase 2 Interacts with Heparan Sulfate with High Affinity and Inhibits Heparanase Activity

Flonia Levy-Adam; Sari Feld; Victoria Cohen-Kaplan; Anna Shteingauz; Miriam Gross; Gil Arvatz; Inna Naroditsky; Neta Ilan; Ilana Doweck; Israel Vlodavsky

Heparanase activity is highly implicated in cell dissemination associated with tumor metastasis, angiogenesis, and inflammation. Heparanase expression is induced in many hematological and solid tumors, associated with poor prognosis. Heparanase homolog, termed heparanase 2 (Hpa2), was cloned based on sequence homology. Detailed characterization of Hpa2 at the biochemical, cellular, and clinical levels has not been so far reported, and its role in normal physiology and pathological disorders is obscure. We provide evidence that unlike heparanase, Hpa2 is not subjected to proteolytic processing and exhibits no enzymatic activity typical of heparanase. Notably, the full-length Hpa2c protein inhibits heparanase enzymatic activity, likely due to its high affinity to heparin and heparan sulfate and its ability to associate physically with heparanase. Hpa2 expression was markedly elevated in head and neck carcinoma patients, correlating with prolonged time to disease recurrence (follow-up to failure; p = 0.006) and inversely correlating with tumor cell dissemination to regional lymph nodes (N-stage; p = 0.03). Hpa2 appears to restrain tumor metastasis, likely by attenuating heparanase enzymatic activity, conferring a favorable outcome of head and neck cancer patients.


Proceedings of the National Academy of Sciences of the United States of America | 2016

Heparanase-neutralizing antibodies attenuate lymphoma tumor growth and metastasis

Marina Weissmann; Gil Arvatz; Netanel A. Horowitz; Sari Feld; Inna Naroditsky; Yi Zhang; Mary Ng; Edward Hammond; Eviatar Nevo; Israel Vlodavsky; Neta Ilan

Significance Heparanase is the predominant enzyme that cleaves heparan sulfate (HS) in mammals, a linear polysaccharide that is normally attached to a core protein, forming HS proteoglycans (HSPGs) that are abundant in the cell surface and extracellular matrix (ECM). Cleavage of HS by heparanase results in structural alterations of the ECM and release of ECM-bound factors that together stimulate cancer metastasis and angiogenesis. Here we provide evidence that heparanase is expressed by B-lymphomas, and heparanase inhibitors restrain tumor growth. Furthermore, we describe, for the first time to our knowledge, the development and characterization of heparanase-neutralizing monoclonal antibodies (mAbs) that inhibit cell invasion and tumor metastasis. Moreover, we show that these mAbs attenuate lymphoma growth by targeting heparanase in the tumor microenvironment. Heparanase is an endoglycosidase that cleaves heparan sulfate side chains of proteoglycans, resulting in disassembly of the extracellular matrix underlying endothelial and epithelial cells and associating with enhanced cell invasion and metastasis. Heparanase expression is induced in carcinomas and sarcomas, often associating with enhanced tumor metastasis and poor prognosis. In contrast, the function of heparanase in hematological malignancies (except myeloma) was not investigated in depth. Here, we provide evidence that heparanase is expressed by human follicular and diffused non-Hodgkins B-lymphomas, and that heparanase inhibitors restrain the growth of tumor xenografts produced by lymphoma cell lines. Furthermore, we describe, for the first time to our knowledge, the development and characterization of heparanase-neutralizing monoclonal antibodies that inhibit cell invasion and tumor metastasis, the hallmark of heparanase activity. Using luciferase-labeled Raji lymphoma cells, we show that the heparanase-neutralizing monoclonal antibodies profoundly inhibit tumor load in the mouse bones, associating with reduced cell proliferation and angiogenesis. Notably, we found that Raji cells lack intrinsic heparanase activity, but tumor xenografts produced by this cell line exhibit typical heparanase activity, likely contributed by host cells composing the tumor microenvironment. Thus, the neutralizing monoclonal antibodies attenuate lymphoma growth by targeting heparanase in the tumor microenvironment.


Neoplasia | 2017

The Heparanase Inhibitor PG545 Attenuates Colon Cancer Initiation and Growth, Associating with Increased p21 Expression

Preeti Singh; Alexandra Blatt; Sari Feld; Yaniv Zohar; Esraa Saadi; Liza Barki-Harrington; Edward Hammond; Neta Ilan; Israel Vlodavsky; Yehuda Chowers; Elizabeth Half

Heparanase activity is highly implicated in cellular invasion and tumor metastasis, a consequence of cleavage of heparan sulfate and remodeling of the extracellular matrix underlying epithelial and endothelial cells. Heparanase expression is rare in normal epithelia, but is often induced in tumors, associated with increased tumor metastasis and poor prognosis. In addition, heparanase induction promotes tumor growth, but the molecular mechanism that underlines tumor expansion by heparanase is still incompletely understood. Here, we provide evidence that heparanase down regulates the expression of p21 (WAF1/CIP1), a cyclin-dependent kinase inhibitor that attenuates the cell cycle. Notably, a reciprocal effect was noted for PG545, a potent heparanase inhibitor. This compound efficiently reduced cell proliferation, colony formation, and tumor xenograft growth, associating with a marked increase in p21 expression. Utilizing the APC Min+/− mouse model, we show that heparanase expression and activity are increased in small bowel polyps, whereas polyp initiation and growth were significantly inhibited by PG545, again accompanied by a prominent induction of p21 levels. Down-regulation of p21 expression adds a novel feature for the emerging pro-tumorigenic properties of heparanase, while the potent p21 induction and anti-tumor effect of PG545 lends optimism that it would prove an efficacious therapeutic in colon carcinoma patients.


Oncotarget | 2016

The prognostic significance of heparanase expression in metastatic melanoma

Olga Vornicova; Ilanit Boyango; Sari Feld; Inna Naroditsky; Olga Kazarin; Yaniv Zohar; Yariv Tiram; Neta Ilan; Ofer Ben-Izhak; Israel Vlodavsky; Gil Bar-Sela

Background Heparanase expression is induced in many types of cancers, including melanoma, and promotes tumor growth, angiogenesis and metastasis. However, there is insufficient data regarding heparanase expression in the metastatic lesions that are the prime target for anti-cancer therapeutics. To that end, we examined heparanase expression in metastatic melanoma and its correlation with clinical parameters. Results Heparanase staining was detected in 88% of the samples, and was strong in 46%. For the entire cohort of metastatic melanoma patients, no apparent correlation was found between heparanase staining intensity and survival. However, in a sub group of 46 patients diagnosed as stage IVc melanoma, strong heparanase staining was associated with reduced survival rates [hazard ratio=2.1; 95%CI 1.1-4.1, p=0.025]. Material and Methods Paraffin sections from 69 metastatic melanomas were subjected to immunohistochemical analysis, applying anti-heparanase antibody. The clinical and pathological data, together with heparanase staining intensity, were evaluated in a logistic regression model for site of metastasis and survival. Slides were also stained for the heparanase-homolog, heparanase-2 (Hpa2). Conclusion Heparanase is highly expressed in metastatic melanoma and predicts poor survival of stage IVc melanoma patients, justifying the development and implementation of heparanase inhibitors as anti-cancer therapeutics.


PLOS ONE | 2012

Clinical Significance of Heparanase Splice Variant (T5) in Renal Cell Carcinoma: Evaluation by a Novel T5-Specific Monoclonal Antibody

Uri Barash; Gil Arvatz; Roy Farfara; Inna Naroditsky; Ilana Doweck; Sari Feld; Ofer Ben-Izhak; Neta Ilan; Ofer Nativ; Israel Vlodavsky

T5 is a novel splice variant of heparanase, an endo-β-D-glucuronidase capable of cleaving heparan sulfate side chains at a limited number of sites. T5 splice variant is endowed with pro-tumorigenic properties, enhancing cell proliferation, anchorage independent growth and tumor xenograft development despite lack of heparan sulfate-degrading activity typical of heparanase. T5 is over expressed in the majority of human renal cell carcinoma biopsies examined, suggesting that this splice variant is clinically relevant. T5 is thought to assume a distinct three-dimensional conformation compared with the wild type heparanase protein. We sought to exploit this presumed feature by generating monoclonal antibodies that will recognize the unique structure of T5 without, or with minimal recognition of heparanase, thus enabling more accurate assessment of the clinical relevance of T5. We provide evidence that such a monoclonal antibody, 9c9, preferentially recognizes T5 compared with heparanase by ELISA, immunoblotting and immunohistochemistry. In order to uncover the clinical significance of T5, a cohort of renal cell carcinoma specimens was subjected to immunostaining applying the 9c9 antibody. Notably, T5 staining intensity was significantly associated with tumor size (p = 0.004) and tumor grade (p = 0.02). Our results suggest that T5 is a functional, pro-tumorigenic entity.


Oncotarget | 2016

Heparanase 2 expression inversely correlates with bladder carcinoma grade and stage

Miriam Gross-Cohen; Sari Feld; Inna Naroditsky; Ofer Nativ; Neta Ilan; Israel Vlodavsky

While the pro-tumorigenic function of heparanase is well taken, the role of its close homolog, heparanase 2 (Hpa2) in cancer is by far less investigated. Utilizing immunohistochemical analysis we found that Hpa2 is expressed by normal bladder transitional epithelium and its levels are decreased substantially in bladder cancer. Notably, tumors that retain high levels of Hpa2 were diagnosed as low grade (p=0.001) and low stage (p=0.002), suggesting that Hpa2 is required to preserve cell differentiation and halt cell motility. Indeed, migration of 5637 bladder carcinoma cells was attenuated significantly by exogenous addition of purified Hpa2, and over expression of Hpa2 in 5637 cells resulted in smaller tumors that were diagnosed as low grade. We also noted that tumors produced by Hpa2 over expressing cells are abundantly decorated with stromal cells and collagen deposition evident by Massons/Trichrome staining, correlating with a marked increase in lysyl oxidase (LOX) staining. The association between Hpa2 and LOX was further confirmed clinically, because of the 16 cases that exhibited strong staining of Hpa2, 14 (87.5%) were also stained strongly for LOX (p=0.05). Collectively, our results suggest that Hpa2 functions as a tumor suppressor in bladder cancer, maintaining cellular differentiation and decreasing cell motility in a manner that appears to be independent of regulating heparanase activity.


Oncotarget | 2018

Patient derived xenografts (PDX) predict an effective heparanase-based therapy for lung cancer

Amit Katz; Uri Barash; Ilanit Boyango; Sari Feld; Yaniv Zohar; Edward Hammond; Neta Ilan; Ran Kremer; Israel Vlodavsky

Heparanase, the sole heparan sulfate (HS) degrading endoglycosidase, regulates multiple biological activities that enhance tumor growth, metastasis, angiogenesis, and inflammation. Heparanase accomplishes this by degrading HS and thereby facilitating cell invasion and regulating the bioavailability of heparin-binding proteins. HS mimicking compounds that inhibit heparanase enzymatic activity were examined in numerous preclinical cancer models. While these studies utilized established tumor cell lines, the current study utilized, for the first time, patient-derived xenografts (PDX) which better resemble the behavior and drug responsiveness of a given cancer patient. We have previously shown that heparanase levels are substantially elevated in lung cancer, correlating with reduced patients survival. Applying patient-derived lung cancer xenografts and a potent inhibitor of heparanase enzymatic activity (PG545) we investigated the significance of heparanase in the pathogenesis of lung cancer. PG545 was highly effective in lung cancer PDX, inhibiting tumor growth in >85% of the cases. Importantly, we show that PG545 was highly effective in PDX that did not respond to conventional chemotherapy (cisplatin) and vice versa. Moreover, we show that spontaneous metastasis to lymph nodes is markedly inhibited by PG545 but not by cisplatin. These results reflect the variability among patients and strongly imply that PG545 can be applied for lung cancer therapy in a personalized manner where conventional chemotherapy fails, thus highlighting the potential benefits of developing anti-heparanase treatment modalities for oncology.


Matrix Biology | 2018

The heparanase inhibitor PG545 is a potent anti-lymphoma drug: Mode of action

Marina Weissmann; Udayan Bhattacharya; Sari Feld; Edward Hammond; Neta Ilan; Israel Vlodavsky

It is now well recognized that heparanase, an endo-β-D-glucuronidase capable of cleaving heparan sulfate (HS) side chains at a limited number of sites, promotes tumorigenesis by diverse mechanisms. Compelling evidence strongly implies that heparanase is a viable target for cancer therapy, thus encouraging the development of heparanase inhibitors as anti-cancer therapeutics. Here, we examined the efficacy and mode of action of PG545, an HS-mimetic heparanase inhibitor, in human lymphoma. We found that PG545 exhibits a strong anti-lymphoma effect, eliciting lymphoma cell apoptosis. Notably, this anti-lymphoma effect involves ER stress response that was accompanied by increased autophagy. The persistent ER stress evoked by PG545 is held responsible for cell apoptosis because apoptotic cell death was attenuated by an inhibitor of PERK, a molecular effector of ER stress. Importantly, PG545 had no such apoptotic effect on naïve splenocytes, further encouraging the development of this compound as anti-lymphoma drug. Surprisingly, we found that PG545 also elicits apoptosis in lymphoma cells that are devoid of heparanase activity (i.e., Raji), indicating that the drug also exerts heparanase-independent function(s) that together underlie the high potency of PG545 in preclinical cancer models.

Collaboration


Dive into the Sari Feld's collaboration.

Top Co-Authors

Avatar

Israel Vlodavsky

Rappaport Faculty of Medicine

View shared research outputs
Top Co-Authors

Avatar

Neta Ilan

Rappaport Faculty of Medicine

View shared research outputs
Top Co-Authors

Avatar

Inna Naroditsky

Rambam Health Care Campus

View shared research outputs
Top Co-Authors

Avatar

Yaniv Zohar

Rambam Health Care Campus

View shared research outputs
Top Co-Authors

Avatar

Gil Arvatz

Rappaport Faculty of Medicine

View shared research outputs
Top Co-Authors

Avatar

Uri Barash

Rappaport Faculty of Medicine

View shared research outputs
Top Co-Authors

Avatar

Flonia Levy-Adam

Rappaport Faculty of Medicine

View shared research outputs
Top Co-Authors

Avatar

Ilana Doweck

Rappaport Faculty of Medicine

View shared research outputs
Top Co-Authors

Avatar

Ilanit Boyango

Rappaport Faculty of Medicine

View shared research outputs
Top Co-Authors

Avatar

Marina Weissmann

Rappaport Faculty of Medicine

View shared research outputs
Researchain Logo
Decentralizing Knowledge