Sarita Goorha
University of Tennessee Health Science Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sarita Goorha.
Brain Research | 2003
Shuxin Li; Sarita Goorha; Leslie R. Ballou; Clark M. Blatteis
This study was undertaken to determine whether cyclooxygenase (COX)-2, the critical enzyme in the production of febrigenic prostaglandin (PG) E(2), may be involved centrally in the fever induced in mice by homologous interleukin (IL)-6, macrophage inflammatory protein (MIP)-1 beta, and interleukin (IL)-18, a member of the pyrogenic IL-1 beta family. To this end, the core temperatures (Tc) of COX-1 and COX-2 gene-ablated mice and of their normal wild-type (WT) counterparts were recorded after intracerebroventricular (i.c.v.) challenge with recombinant murine (rm) IL-6 (10 ng/mouse), rmMIP-1 beta (20 pg/mouse), rmIL-18 (0.01-1 microgram/mouse), rmIL-1 beta (positive control; 0.1 microgram/mouse), or their vehicle (0.1% bovine serum albumin [BSA] in sterile phosphate-buffered saline [PBS]; 5 microl/mouse). rmIL-6 caused a approximately 1 degrees C T(c) rise in WT mice that peaked at approximately 120 min and gradually recovered over the next 3 h; COX-1(-/-) mice exhibited a relatively faster (peak at 45 min) and shorter (recovery at 150 min) febrile course, whereas COX-2(-/-) mice did not develop fever. rmMIP-1 beta induced a 1 degrees C fever (peak at 60 min) with a long time course (recovery incomplete at 300 min) in both WT and COX-2(-/-) mice; COX-1(-/-) mice displayed a quick-onset (peak at 40 min) and shorter (recovery at approximately 240 min) fever. rmIL-18 did not cause any thermal response at any dose whether administered intraperitoneally (i.p.) or i.c.v. in WT mice; COX gene-ablated mice, therefore, were not tested. These data indicate that COX-2-dependent PGE(2) is critical for the febrile response to IL-6, but not to MIP-1 beta. IL-18 i.p. or i.c.v. is not pyrogenic.
Prostaglandins & Other Lipid Mediators | 2002
Jianyi Zhang; Sarita Goorha; Leslie R. Ballou
Prostaglandins are essential regulators of tissue homeostasis, reproduction and inflammation. We have recently shown that cells derived from cyclooxygenase (COX)-deficient mice express higher, compensatory levels of the remaining COX isozyme [Kirtikara et al., J. Exp. Med., 187, 517 (1998)]. To assess this compensatory expression phenomenon in vivo, we quantified COX-1 and COX-2 mRNA levels in various organs of COX-1- and COX-2-ablated mice using a reverse transcriptase-polymerase chain reaction (RT-PCR) method. We found that COX-1 and COX-2 mRNAs in the brains of COX-ablated mice were elevated > 2-fold compared with wild-type (WT) animals. COX-2 mRNA was enhanced approximately 2-fold in the kidneys and stomachs of COX-1-deficient mice while COX-1 expression remained unchanged. Conversely, the livers of COX-2-deficient mice expressed 15-fold higher COX-1 mRNA levels, while hepatic COX-2 mRNA levels were not significantly altered in the COX-1-ablated mice. Steady state levels of COX-1 and COX-2 mRNAs in the hearts, lungs and spleens of WT, COX-1- and COX-2-deficient mice were indistinguishable from each other. Peritoneal macrophages isolated from COX-1- and COX-2-ablated mice also expressed significantly higher steady-state levels of cytoplasmic phospholipase A2 and 5-lipooxygenase mRNAs suggesting a global upregulation of eicosanoid biosynthetic pathways in COX-deficient mice. These data suggest that expression of both COX-1 and COX-2 can be re-programmed to compensate for the lack of both alleles of the alternate COX gene in transgenic mice.
Laboratory Investigation | 2002
Stanley J.F. Laulederkind; Sandra Thompson-Jaeger; Sarita Goorha; Qingshan Chen; Amina Fu; Jae Young Rho; Leslie R. Ballou
In an attempt to define the roles of prostaglandin H synthase 1 (PGHS-1, cyclooxygenase-1, COX-1) and prostaglandin H synthase 2 (PGHS-2, cyclooxygenase-2, COX-2) in wound healing, we investigated the healing of incisional dermal wounds in wild-type, PGHS-1 null, and PGHS-2 null mice. We measured tensile strength of the wounds, levels of PGHS-1 and PGHS-2 mRNA in the wound site, and histologic markers for the inflammatory, proliferative, and remodeling phases of wound healing. Although no gross visible differences were noted among healed wounds of the different mouse types, measurement of tensile strength showed that both PGHS-1 and PGHS-2 null wounds were weaker (75% and 70%, respectively) than wild-type wounds at 12 days after incision. At Day 8 the endothelial staining was 70% greater in the wounds of PGHS-2 null mice compared with their wild-type counterparts. In contrast at Day 12, staining for macrophages and myofibroblasts was less in PGHS-1 null wounds compared with wild-type and PGHS-2 null tissue. Compensatory expression of the alternate PGHS mRNA could be demonstrated by RT-PCR in the wounds of PGHS null mice on Days 1 and 4. We conclude that both PGHS-1 and PGHS-2 genes play distinct roles in the process of dermal wound healing.
Current protocols in human genetics | 2017
Sarita Goorha; Lawrence T. Reiter
A major issue in studying human neurogenetic disorders, especially rare syndromes affecting the nervous system, is the ability to grow neuronal cultures that accurately represent these disorders for analysis. Although there has been some success in generating induced pluripotent stem (iPS) cells from both skin and blood, there are still limitations to the collection and production of iPS cells from these biospecimens. We have had significant success in collecting and growing human dental pulp stem (DPS) cells from exfoliated teeth sent to our laboratory by the parents of children with a variety of rare neurogenetic syndromes. This protocol outlines our current methods for the growth and expansion of DPS cells from exfoliated (baby) teeth. These DPS cells can be differentiated into a variety of cell types including osteoblasts, chondrocytes, and mixed neuron and glial cultures. Here we provide our protocol for the differentiation of early passage DPS cell cultures into neurons for molecular studies.
Stem Cells | 2017
Keith W. Dunaway; Sarita Goorha; Lauren Matelski; Nora Urraca; Pamela J. Lein; Ian Korf; Lawrence T. Reiter; Janine M. LaSalle
Early embryonic stages of pluripotency are modeled for epigenomic studies primarily with human embryonic stem cells (ESC) or induced pluripotent stem cells (iPSCs). For analysis of DNA methylation however, ESCs and iPSCs do not accurately reflect the DNA methylation levels found in preimplantation embryos. Whole genome bisulfite sequencing (WGBS) approaches have revealed the presence of large partially methylated domains (PMDs) covering 30%‐40% of the genome in oocytes, preimplantation embryos, and placenta. In contrast, ESCs and iPSCs show abnormally high levels of DNA methylation compared to inner cell mass (ICM) or placenta. Here we show that dental pulp stem cells (DPSCs), derived from baby teeth and cultured in serum‐containing media, have PMDs and mimic the ICM and placental methylome more closely than iPSCs and ESCs. By principal component analysis, DPSC methylation patterns were more similar to two other neural stem cell types of human derivation (EPI‐NCSC and LUHMES) and placenta than were iPSCs, ESCs or other human cell lines (SH‐SY5Y, B lymphoblast, IMR90). To test the suitability of DPSCs in modeling epigenetic differences associated with disease, we compared methylation patterns of DPSCs derived from children with chromosome 15q11.2‐q13.3 maternal duplication (Dup15q) to controls. Differential methylation region (DMR) analyses revealed the expected Dup15q hypermethylation at the imprinting control region, as well as hypomethylation over SNORD116, and novel DMRs over 147 genes, including several autism candidate genes. Together these data suggest that DPSCs are a useful model for epigenomic and functional studies of human neurodevelopmental disorders. Stem Cells 2017;35:981–988
Data in Brief | 2016
El Ayachi Ikbale; Sarita Goorha; Lawrence T. Reiter; Gustavo A. Miranda-Carboni
These data relate to the differentiation of human dental pulp stem cells (DPSC) and DPSC immortalized by constitutively expressing human telomerase reverse transcriptase (hTERT) through both osteogenic and adipogenic lineages (i.e. to make bone producing and fat producing cells from these dental pulp stem cells). The data augment another study to characterize immortalized DPSC for the study of neurogenetic “Characterization of neurons from immortalized dental pulp stem cells for the study of neurogenetic disorders” [1]. Two copies of one typical control cell line (technical replicates) were used in this study. The data represent the differentiation of primary DPSC into osteoblast cells approximately 60% more effectively than hTERT immortalized DPSC. Conversely, both primary and immortalized DPSC are poorly differentiated into adipocytes. The mRNA expression levels for both early and late adipogenic and osteogenic gene markers are shown.
Molecular Autism | 2018
Nora Urraca; Kevin A. Hope; A. Kaitlyn Victor; T. Grant Belgard; Rawaha Memon; Sarita Goorha; Colleen Valdez; Quynh T. Tran; Silvia Sanchez; Juanma Ramirez; Martin Donaldson; Dave Bridges; Lawrence T. Reiter
BackgroundThe inability to analyze gene expression in living neurons from Angelman (AS) and Duplication 15q (Dup15q) syndrome subjects has limited our understanding of these disorders at the molecular level.MethodHere, we use dental pulp stem cells (DPSC) from AS deletion, 15q Duplication, and neurotypical control subjects for whole transcriptome analysis. We identified 20 genes unique to AS neurons, 120 genes unique to 15q duplication, and 3 shared transcripts that were differentially expressed in DPSC neurons vs controls.ResultsCopy number correlated with gene expression for most genes across the 15q11.2-q13.1 critical region. Two thirds of the genes differentially expressed in 15q duplication neurons were downregulated compared to controls including several transcription factors, while in AS differential expression was restricted primarily to the 15q region. Here, we show significant downregulation of the transcription factors FOXO1 and HAND2 in neurons from 15q duplication, but not AS deletion subjects suggesting that disruptions in transcriptional regulation may be a driving factor in the autism phenotype in Dup15q syndrome. Downstream analysis revealed downregulation of the ASD associated genes EHPB2 and RORA, both genes with FOXO1 binding sites. Genes upregulated in either Dup15q cortex or idiopathic ASD cortex both overlapped significantly with the most upregulated genes in Dup15q DPSC-derived neurons.ConclusionsFinding a significant increase in both HERC2 and UBE3A in Dup15q neurons and significant decrease in these two genes in AS deletion neurons may explain differences between AS deletion class and UBE3A specific classes of AS mutation where HERC2 is expressed at normal levels. Also, we identified an enrichment for FOXO1-regulated transcripts in Dup15q neurons including ASD-associated genes EHPB2 and RORA indicating a possible connection between this syndromic form of ASD and idiopathic cases.
Proceedings of the National Academy of Sciences of the United States of America | 2000
Leslie R. Ballou; Regina Botting; Sarita Goorha; Jianyi Zhang; John R. Vane
Arthritis & Rheumatism | 2000
Linda K. Myers; Andrew H. Kang; Arnold E. Postlethwaite; Edward F. Rosloniec; Scott G. Morham; Boris V. Shlopov; Sarita Goorha; Leslie R. Ballou
Journal of Experimental Medicine | 1998
Kanyawim Kirtikara; Scott G. Morham; Stanley J.F. Laulederkind; Takuro Kanekura; Sarita Goorha; Leslie R. Ballou