Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sarita S. Hardas is active.

Publication


Featured researches published by Sarita S. Hardas.


Journal of Alzheimer's Disease | 2010

Oxidatively modified glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and Alzheimer's disease: many pathways to neurodegeneration.

D. Allan Butterfield; Sarita S. Hardas; Miranda L. Bader Lange

Recently, the oxidoreductase, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), has become a subject of interest as more and more studies reveal a surfeit of diverse GAPDH functions, extending beyond traditional aerobic metabolism of glucose. As a result of multiple isoforms and cellular locales, GAPDH is able to come in contact with a variety of small molecules, proteins, membranes, etc., that play important roles in normal and pathologic cell function. Specifically, GAPDH has been shown to interact with neurodegenerative disease-associated proteins, including the amyloid-beta protein precursor (AbetaPP). Studies from our laboratory have shown significant inhibition of GAPDH dehydrogenase activity in Alzheimers disease (AD) brain due to oxidative modification. Although oxidative stress and damage is a common phenomenon in the AD brain, it would seem that inhibition of glycolytic enzyme activity is merely one avenue in which AD pathology affects neuronal cell development and survival, as oxidative modification can also impart a toxic gain-of-function to many proteins, including GAPDH. In this review, we examine the many functions of GAPDH with respect to AD brain; in particular, the apparent role(s) of GAPDH in AD-related apoptotic cell death is emphasized.


Toxicological Sciences | 2010

Brain Distribution and Toxicological Evaluation of a Systemically Delivered Engineered Nanoscale Ceria

Sarita S. Hardas; D.A. Butterfield; Rukhsana Sultana; Michael T. Tseng; Mo Dan; Rebecca L. Florence; Jason M. Unrine; Uschi M. Graham; Peng Wu; Eric A. Grulke; Robert A. Yokel

Engineered nanoscale ceria is used as a diesel fuel catalyst. Little is known about its mammalian central nervous system effects. The objective of this paper is to characterize the biodistribution of a 5-nm citrate-stabilized ceria dispersion from blood into brain and its pro- or antioxidant effects. An approximately 4% aqueous ceria dispersion was iv infused into rats (0, 100, and up to 250 mg/kg), which were terminated after 1 or 20 h. Ceria concentration, localization, and chemical speciation in the brain were assessed by inductively coupled plasma mass spectrometry, light and electron microscopy (EM), and electron energy loss spectroscopy (EELS). Pro- or antioxidative stress effects were assessed as protein carbonyls, 3-nitrotyrosine, and protein-bound 4-hydroxy-2-trans-nonenal in hippocampus, cortex, and cerebellum. Glutathione reductase, glutathione peroxidase, manganese superoxide dismutase, and catalase levels and activities were measured in hippocampus. Catalase levels and activities were also measured in cortex and cerebellum. Na fluorescein and horseradish peroxidase (HRP) were given iv as blood-brain barrier (BBB) integrity markers. Mortality was seen after administration of 175-250 mg ceria/kg. Twenty hours after infusion of 100 mg ceria/kg, brain HRP was marginally elevated. EM and EELS revealed mixed Ce(III) and Ce(IV) valence in the freshly synthesized ceria in vitro and in ceria agglomerates in the brain vascular compartment. Ceria was not seen in microvascular endothelial or brain cells. Ceria elevated catalase levels at 1 h and increased catalase activity at 20 h in hippocampus and decreased catalase activity at 1 h in cerebellum. Compared with a previously studied approximately 30-nm ceria, this ceria was more toxic, was not seen in the brain, and produced little oxidative stress effect to the hippocampus and cerebellum. The results are contrary to the hypothesis that a smaller engineered nanomaterial would more readily permeate the BBB.


Nanotoxicology | 2009

Biodistribution and oxidative stress effects of a systemically-introduced commercial ceria engineered nanomaterial

Robert A. Yokel; Rebecca L. Florence; Jason M. Unrine; Michael T. Tseng; Uschi M. Graham; Peng Wu; Eric A. Grulke; Rukhsana Sultana; Sarita S. Hardas; D. Allan Butterfield

The objective was to characterize the biodistribution of nanoscale ceria from blood and its effects on oxidative stress endpoints. A commercial 5% crystalline ceria dispersion in water (average particle size ~31±4 nm) was infused intravenously into rats (0, 50, 250 and 750 mg/kg), which were terminated 1 or 20 h later. Biodistribution in rat tissues was assessed by microscopy and ICP-AES/MS. Oxidative stress effects were assessed by protein-bound 4-hydroxy 2-trans-nonenal (HNE), protein-bound 3-nitrotyrosine (3-NT), and protein carbonyls. Evans blue (EB)-albumin and Na fluorescein (Na2F) were given intravenously as blood-brain barrier integrity markers. The initial ceria t½ in blood was ~7 min. Brain EB and Na2F increased some at 20 h. Microscopy revealed peripheral organ ceria agglomerations but little in the brain. Spleen Ce concentration was >liver >blood >brain. Reticuloendothelial tissues cleared ceria. HNE was significantly increased in the hippocampus at 20 h. Protein carbonyl and 3-NT changes were small. The nanoparticle characterizations before and after biodistribution, linked with the physiological responses, provide a foundation for evaluating the effects of engineered nanomaterial physico-chemical properties on peripheral organ distribution, brain entry and resultant toxicity.


Toxicological Sciences | 2012

Distribution, Elimination, and Biopersistence to 90 Days of a Systemically Introduced 30 nm Ceria-Engineered Nanomaterial in Rats

Robert A. Yokel; Tu C. Au; Robert C. MacPhail; Sarita S. Hardas; D. Allan Butterfield; Rukhsana Sultana; Michael Goodman; Michael T. Tseng; Mo Dan; Hamed Haghnazar; Jason M. Unrine; Uschi M. Graham; Peng Wu; Eric A. Grulke

Nanoceria is used as a catalyst in diesel fuel, as an abrasive in printed circuit manufacture, and is being pursued as an antioxidant therapeutic. Our objective is to extend previous findings showing that there were no reductions of cerium in organs of the mononuclear phagocyte (reticuloendothelial) system up to 30 days after a single nanoscale ceria administration. An ~5% aqueous dispersion of citrate-stabilized 30 nm ceria, synthesized and characterized in-house, or vehicle, was iv infused into rats terminated 1, 7, 30, or 90 days later. Cageside observations were obtained daily, body weight weekly. Daily urinary and fecal cerium outputs were quantified for 2 weeks. Nine organs were weighed and samples collected from 14 tissues/organs/systems, blood and cerebrospinal fluid for cerium determination. Histology and oxidative stress were assessed. Less than 1% of the nanoceria was excreted in the first 2 weeks, 98% in feces. Body weight gain was initially impaired. Spleen weight was significantly increased in some ceria-treated groups, associated with abnormalities. Ceria was primarily retained in the spleen, liver, and bone marrow. There was little decrease of ceria in any tissue over the 90 days. Granulomas were observed in the liver. Time-dependent oxidative stress changes were seen in the liver and spleen. Nanoscale ceria was persistently retained by organs of the mononuclear phagocyte system, associated with adverse changes. The results support concern about the long-term fate and adverse effects of inert nanoscale metal oxides that distribute throughout the body, are persistently retained, and produce adverse changes.


Toxicology and Applied Pharmacology | 2012

Alteration of hepatic structure and oxidative stress induced by intravenous nanoceria.

Michael T. Tseng; Xiaoqin Lu; Xiaoxian Duan; Sarita S. Hardas; Rukhsana Sultana; Peng Wu; Jason M. Unrine; Uschi M. Graham; D. Allan Butterfield; Eric A. Grulke; Robert A. Yokel

Beyond the traditional use of ceria as an abrasive, the scope of nanoceria applications now extends into fuel cell manufacturing, diesel fuel additives, and for therapeutic intervention as a putative antioxidant. However, the biological effects of nanoceria exposure have yet to be fully defined, which gave us the impetus to examine its systemic biodistribution and biological responses. An extensively characterized nanoceria (5 nm) dispersion was vascularly infused into rats, which were terminated 1 h, 20 h or 30 days later. Light and electron microscopic tissue characterization was conducted and hepatic oxidative stress parameters determined. We observed acute ceria nanoparticle sequestration by Kupffer cells with subsequent bioretention in parenchymal cells as well. The internalized ceria nanoparticles appeared as spherical agglomerates of varying dimension without specific organelle penetration. In hepatocytes, the agglomerated nanoceria frequently localized to the plasma membrane facing bile canaliculi. Hepatic stellate cells also sequestered nanoceria. Within the sinusoids, sustained nanoceria bioretention was associated with granuloma formations comprised of Kupffer cells and intermingling CD3⁺ T cells. A statistically significant elevation of serum aspartate aminotransferase (AST) level was seen at 1 and 20 h, but subsided by 30 days after ceria administration. Further, elevated apoptosis was observed on day 30. These findings, together with increased hepatic protein carbonyl levels on day 30, indicate ceria-induced hepatic injury and oxidative stress, respectively. Such observations suggest a single vascular infusion of nanoceria can lead to persistent hepatic retention of particles with possible implications for occupational and therapeutic exposures.


Redox biology | 2013

Oxidative modification of lipoic acid by HNE in Alzheimer disease brain

Sarita S. Hardas; Rukhsana Sultana; Amy M. Clark; Tina L. Beckett; Luke I. Szweda; M. Paul Murphy; D. Allan Butterfield

Alzheimer disease (AD) is an age-related neurodegenerative disease characterized by the presence of three pathological hallmarks: synapse loss, extracellular senile plaques (SP) and intracellular neurofibrillary tangles (NFTs). The major component of SP is amyloid β-peptide (Aβ), which has been shown to induce oxidative stress. The AD brain shows increased levels of lipid peroxidation products, including 4-hydroxy-2-nonenal (HNE). HNE can react covalently with Cys, His, or Lys residues on proteins, altering structure and function of the latter. In the present study we measured the levels of the HNE-modified lipoic acid in brain of subjects with AD and age-matched controls. Lipoic acid is a key co-factor for a number of proteins including pyruvate dehydrogenase and α-ketoglutarate dehydrogenase, key complexes for cellular energetics. We observed a significant decrease in the levels of HNE-lipoic acid in the AD brain compared to that of age-matched controls. To investigate this phenomenon further, the levels and activity of lipoamide dehydrogenase (LADH) were measured in AD and control brains. Additionally, LADH activities were measured after in-vitro HNE-treatment to mice brains. Both LADH levels and activities were found to be significantly reduced in AD brain compared to age-matched control. HNE-treatment also reduced the LADH activity in mice brain. These data are consistent with a two-hit hypothesis of AD: oxidative stress leads to lipid peroxidation that, in turn, causes oxidative dysfunction of key energy-related complexes in mitochondria, triggering neurodegeneration. This study is consonant with the notion that lipoic acid supplementation could be a potential treatment for the observed loss of cellular energetics in AD and potentiate the antioxidant defense system to prevent or delay the oxidative stress in and progression of this devastating dementing disorder.


Neurotoxicology | 2012

Rat brain pro-oxidant effects of peripherally administered 5 nm ceria 30 days after exposure

Sarita S. Hardas; Rukhsana Sultana; Govind Warrier; Mo Dan; Rebecca L. Florence; Peng Wu; Eric A. Grulke; Michael T. Tseng; Jason M. Unrine; Uschi M. Graham; Robert A. Yokel; D. Allan Butterfield

The objective of this study was to determine the residual pro-or anti-oxidant effects in rat brain 30 days after systemic administration of a 5 nm citrate-stabilized ceria dispersion. A ∼4% aqueous ceria dispersion was iv-infused (0 or 85 mg/kg) into rats which were terminated 30 days later. Ceria concentration, localization, and chemical speciation in the brain was assessed by inductively coupled plasma mass spectrometry (ICP-MS), light and electron microscopy (EM), and electron energy loss spectroscopy (EELS), respectively. Pro- or anti-oxidant effects were evaluated by measuring levels of protein carbonyls (PC), 3-nitrotyrosine (3NT), and protein-bound-4-hydroxy-2-trans-nonenal (HNE) in the hippocampus, cortex, and cerebellum. Glutathione reductase (GR), glutathione peroxidase (GPx), superoxide dismutase (SOD), and catalase levels and activity were measured in addition to levels of inducible nitric oxide (iNOS), and heat shock protein-70 (Hsp70). The blood brain barrier (BBB) was visibly intact and no ceria was seen in the brain cells. Ceria elevated PC and Hsp70 levels in hippocampus and cerebellum, while 3NT and iNOS levels were elevated in the cortex. Whereas glutathione peroxidase and catalase activity were decreased in the hippocampus, GR levels were decreased in the cortex, and GPx and catalase levels were decreased in the cerebellum. The GSH:GSSG ratio, an index of cellular redox status, was decreased in the hippocampus and cerebellum. The results are in accordance with the observation that this nanoscale material remains in this mammal model up to 30 days after its administration and the hypothesis that it exerts pro-oxidant effects on the brain without crossing the BBB. These results have important implications on the potential use of ceria ENM as therapeutic agents.


Journal of Biomedical Materials Research Part A | 2011

Tuning of the pro-oxidant and antioxidant activity of trolox through the controlled release from biodegradable poly(trolox ester) polymers†

Paritosh P. Wattamwar; Sarita S. Hardas; D. Allan Butterfield; Kimberly W. Anderson; Thomas D. Dziubla

In a variety of biomedical applications (e.g., tissue engineering, drug delivery, etc.), the role of a bioactive material is to serve as a platform by which one can modulate the cellular response into a desired role. Of the methods by which one may achieve this control (e.g., shape, structure, binding, growth factor release), the control of the cellular redox state has been under evaluated. Ideally, the ability to tune the redox state of a cell provides an additional level of control over a variety of cellular responses including, cell differentiation, proliferation, and apoptosis. Yet, in order to achieve such control, it is important to know both the overall oxidative status of the cell and what molecular targets are being oxidized. In this work, poly (trolox ester) nanoparticles were evaluated for their ability to either inhibit or induce cellular oxidative stress in a dose-dependent fashion. This polymer delivery form possessed a unique ability to suppress protein oxidation, a feature not seen in the free drug form, emphasizing the advantage of the delivery/dosage formulation has upon regulating cellular response.


Nanotoxicology | 2014

Rat hippocampal responses up to 90 days after a single nanoceria dose extends a hierarchical oxidative stress model for nanoparticle toxicity

Sarita S. Hardas; Rukhsana Sultana; Warrier G; Mo Dan; Peng Wu; Eric A. Grulke; Michael T. Tseng; Jason M. Unrine; Uschi M. Graham; Robert A. Yokel; D.A. Butterfield

Abstract Ceria engineered nanomaterials (ENMs) have very promising commercial and therapeutic applications. Few reports address the effects of nanoceria in intact mammals, let alone long term exposure. This knowledge is essential to understand potential therapeutic applications of nanoceria in relation to its hazard assessment. The current study elucidates oxidative stress responses in the rat hippocampus 1 and 20 h, and 1, 7, 30 and 90 days following a single systemic infusion of 30 nm nanoceria. The results are incorporated into a previously described hierarchical oxidative stress (HOS) model. During the 1–20 h period, increases of the GSSG: GSH ratio and cytoprotective phase-II antioxidants were observed. During the 1–7 d period, cytoprotective phase-II antioxidants activities were inhibited with concomitant elevation of protein carbonyl (PC), 3-nitrotyrosine (3NT), heme oxygenase-1 (HO-1), cytokine IL-1β and the autophagy marker LC-3AB. At 30 day post ceria infusion, oxidative stress had its major impact. Phase-II enzyme activities were inhibited; concurrently PC, 3NT, HO-1 and Hsp70 levels were elevated along with augmentation of IL-1β, pro-apoptotic pro-caspase-3 and LC-3AB levels. This progress of escalating oxidative stress was reversed at 90 days when phase-II enzyme levels and activities were restored to normal levels, PC and 3NT levels were reduced to baseline, cytokine and pro-caspase-3 levels were suppressed, and cellular redox balance was restored in the rat hippocampus. This study demonstrates that a single administration of nanoceria induced oxidative stress that escalates to 30 days then terminates, in spite of the previously reported continued presence of nanoceria in peripheral organs. These results for the first time confirm in vivo the HOS model of response to ENM previously posited based on in vitro studies and extends this prior hierarchical oxidative stress model that described three tiers to a 4th tier, characterized by resolution of the oxidative stress and return to normal conditions.


Journal of Neuroscience Research | 2007

Glutathione elevation by γ‐glutamyl cysteine ethyl ester as a potential therapeutic strategy for preventing oxidative stress in brain mediated by in vivo administration of adriamycin: Implication for chemobrain

Gururaj Joshi; Sarita S. Hardas; Rukhsana Sultana; Daret K. St. Clair; Mary Vore; D. Allan Butterfield

Collaboration


Dive into the Sarita S. Hardas's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peng Wu

University of Kentucky

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mo Dan

University of Kentucky

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge