Šárka Petrová
Research Institute of Crop Production
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Šárka Petrová.
Chemosphere | 2014
Petr Soudek; Šárka Petrová; Radomíra Vaňková; Jing Song; Tomáš Vaněk
The essential requirement for the effective phytoremediation is selection of a plant species which should be metal tolerant, with high biomass production and known agronomic techniques. The above mentioned criteria are met by crop plant sorghum (Sorghum bicolor). The response of hydroponically grown S. bicolor plants to cadmium and zinc stress was followed. The impact of metal application on physiological parameters, including changes in chlorophylls contents and antioxidative enzymes activities, was followed during the stress progression. Cadmium and zinc were accumulated primarily in the roots of sorghum plants. However, elevation of metal concentrations in the media promoted their transfer to the shoots. Toxic effects of metals applied at lower concentrations were less serious in the shoots in comparison with their influence to the roots. When applied at higher concentrations, transfer of the metals into the leaves increased, causing growth reduction and leading to Chl loss and metal-induced chlorosis. Moreover, higher metal levels in the roots overcame the quenching capacity of peroxidase and glutathione transferase, which was associated with reduction of their activities. Fortification of antioxidant system by addition of glutathione significantly increased the accumulation of cadmium in the roots as well as in the shoots at the highest cadmium concentration applied.
Journal of Environmental Radioactivity | 2011
Petr Soudek; Šárka Petrová; Dagmar Benešová; Marcela Dvořáková; Tomáš Vaněk
Hydroponicaly cultivated plants were grown on medium containing uranium. The appropriate concentrations of uranium for the experiments were selected on the basis of a standard ecotoxicity test. The most sensitive plant species was determined to be Lactuca sativa with an EC(50) value about 0.1mM. Cucumis sativa represented the most resistant plant to uranium (EC(50)=0.71 mM). Therefore, we used the uranium in a concentration range from 0.1 to 1mM. Twenty different plant species were tested in hydroponic solution supplemented by 0.1mM or 0.5mM uranium concentration. The uranium accumulation of these plants varied from 0.16 mg/g DW to 0.011 mg/g DW. The highest uranium uptake was determined for Zea mays and the lowest for Arabidopsis thaliana. The amount of accumulated uranium was strongly influenced by uranium concentration in the cultivation medium. Autoradiography showed that uranium is mainly localized in the root system of the plants tested. Additional experiments demonstrated the possibility of influencing the uranium uptake from the cultivation medium by amendments. Tartaric acid was able to increase uranium uptake by Brassica oleracea and Sinapis alba up to 2.8 times or 1.9 times, respectively. Phosphate deficiency increased uranium uptake up to 4.5 times or 3.9 times, respectively, by Brassica oleracea and S. alba. In the case of deficiency of iron or presence of cadmium ions we did not find any increase in uranium accumulation.
Environmental Science & Technology | 2015
Premysl Landa; Sylva Prerostova; Šárka Petrová; Vojtech Knirsch; Radomira Vankova; Tomas Vanek
The impact of nanosize was evaluated by comparing of the transcriptomic response of Arabidopsis thaliana roots to ZnO nanoparticles (nZnO), bulk ZnO, and ionic Zn(2+). Microarray analyses revealed 416 up- and 961 down-regulated transcripts (expression difference >2-fold, p [FDR] < 0.01) after a seven-day treatment with nZnO (average particle size 20 nm, concentration 4 mg L(-1)). Exposure to bulk ZnO resulted in 816 up- and 2179 down-regulated transcripts. The most dramatic changes (1711 transcripts up- and 3242 down-regulated) were caused by the presence of ionic Zn(2+) (applied as ZnSO4.7H20 at a concentration of 14.14 mg L(-1), corresponding to the amount of Zn contained in 4 mg L(-1) ZnO). Genes involved in stress response (e.g., to salt, osmotic stress or water deprivation) were the most relatively abundant group of gene transcripts up-regulated by all three Zn treatments while genes involved in cell organization and biogenesis (e.g., tubulins, arabinogalactan proteins) and DNA or RNA metabolism (e.g., histones) were the most relatively abundant groups of down-regulated transcripts. The similarity of the transcription profiles and the increasing number of changed transcripts correlating with the increased concentration of Zn(2+) in cultivation medium indicated that released Zn(2+) may substantially contribute to the toxic effect of nZnO because particle size has not demonstrated a decisive role.
Journal of Environmental Radioactivity | 2010
Petr Soudek; Šárka Petrová; Dagmar Benešová; Jan Kotyza; Martin Vágner; Radomíra Vaňková; Tomáš Vaněk
A soil-plant transfer study was performed using soil from a former uranium ore processing factory in South Bohemia. We present the results from greenhouse experiments which include estimates of the time required for phytoremediation. The accumulation of (226)Ra by different plant species from a mixture of garden soil and contaminated substrate was extremely variable, ranging from 0.03 to 2.20 Bq (226)Ra/g DW. We found differences in accumulation of (226)Ra between plants from the same genus and between cultivars of the same plant species. The results of (226)Ra accumulation showed a linear relation between concentration of (226)Ra in plants and concentration of (226)Ra in soil mixtures. On the basis of these results we estimated the time required for phytoremediation, but this appears to be too long for practical purposes.
Science of The Total Environment | 2017
Šárka Petrová; Jan Rezek; Petr Soudek; Tomáš Vaněk
Our project was aimed at improving a brownfield in the city of Kladno, where an old steel producing facility used to be in operation. Ecological risk is mainly caused by the processing of co-products during coal production (tars, oils). Knowledge of toxicology and environmental aspects can help us protect human health and the environment. Primarily, we focused on soil sampling and identification of pollutants. Results showed that organic contamination on the site is very high. Average concentration of total petroleum carbon in the soil was about 13g/kg DW, which is much more than the maximum allowed concentration. For selection of suitable plant species for phytoremediation at the site, experiments were conducted in a greenhouse. Biomass growth, root morphology, and pigment content in the leaves of Brassica napus var. Opus-C1 and Sorghum×drummondii var. Honey Graze BMR plants were studied. Plant analysis confirmed that polyaromatic hydrocarbons (PAHs) accumulated in the shoots of both plant species. B. napus plants grown on Poldi soil in a greenhouse were able to survive the toxicity of PAHs in soil, and their ability to accumulate PAHs from soil was evident. However, more studies are needed to decide if the plants are usable for phytoremediation of this brownfield.
Food Chemistry | 2016
Petr Soudek; Marina Ursu; Šárka Petrová; Tomáš Vaněk
Many areas have been heavily contaminated by heavy metals from industry and are not suitable for food production. The consumption of contaminated foods represents a health risk in humans, although some heavy metals are essential at low concentrations. Increasing the concentrations of essential elements in foods is one goal to improve nutrition. The aim of this study was to increase the accumulation of heavy metals in plant foods by the external application of putrescine. The levels of cadmium, zinc and iron were measured in different vegetables grown in hydroponic medium supplemented with heavy metals and compared with those grown in a reference medium. The estimated daily intake, based on the average daily consumption for various vegetable types, and the influence of polyamines on metal uptake were calculated.
Chemosphere | 2013
Petr Soudek; Daniel Kufner; Šárka Petrová; Martin Mihaljevič; Tomáš Vaněk
The ability of thorium uptake as well as responses to heavy metal stress were tested in tobacco cultivar La Burley 21. Thorium was accumulated preferentially in the root system. The presence of citric, tartaric and oxalic acids in hydroponic medium increased thorium accumulation in all plant organs. On the other hand, the addition of diamines and polyamines, the important antioxidants in plants, resulted in decrease of thorium accumulation, especially in the root system. Negative correlation was found between putrescine concentration and thorium accumulation. Nevertheless, the most important factor influencing the accumulation of thorium was the absence of phosphate ions in a hydroponic medium that caused more than 10-fold increase of thorium uptake in all plant parts. Accumulation and distribution of thorium was followed in six cultivars and 14 selected transformants. Cultivar La Barley 21 represented an average between the tested genotypes, having a very good distribution ratio between roots, stems and leaves.
Archive | 2010
Tomas Vanek; Radka Podlipná; Zuzana Fialová; Šárka Petrová; Petr Soudek
An overview on phytoremediation is presented, which includes basic definitions, advantages and potential drawbacks as well as information about recent developments in this field of research and applications, especially in the area of decontamination and cleaning of organic xenobiotics containing industrial and agricultural wastewaters.
Environmental Science & Technology | 2017
Premysl Landa; Pavel Dytrych; Sylva Prerostova; Šárka Petrová; Radomira Vankova; Tomas Vanek
Engineered nanoparticles (ENPs) exhibit unique properties advantageous in a number of applications, but they also represent potential health and environmental risks. In this study, we investigated the phytotoxic mechanism of CuO ENPs using transcriptomic analysis and compared this response with the response to CuO bulk particles and ionic Cu2+. Ionic Cu2+ at the concentration of 0.16 mg L-1 changed transcription of 2692 genes (p value of <0.001, fold change of ≥2) after 7 days of exposure, whereas CuO ENPs and bulk particles (both in the concentration of 10 mg L-1) altered the expression of 922 and 482 genes in Arabidopsis thaliana roots, respectively. The similarity between transcription profiles of plants exposed to ENPs and ionic Cu2+ indicated that the main factor in phytotoxicity was the release of Cu2+ ions from CuO ENPs after 7 days of exposure. The effect of Cu2+ ions was evident in all treatments, as indicated by the down-regulation of genes involved in metal homeostasis and transport and the up-regulation of oxidative stress response genes. ENPs were more soluble than bulk particles, resulting in the up-regulation of metallochaperone-like genes or the down-regulation of aquaporins and metal transmembrane transporters that was also characteristic for ionic Cu2+ exposure.
European Journal of Soil Biology | 2007
Petr Soudek; Petr Petřík; Martin Vágner; Richard Tykva; Václav Plojhar; Šárka Petrová; Tomáš Vaněk