Saryn R. Goldberg
Stanford University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Saryn R. Goldberg.
Journal of Biomechanics | 2003
Saryn R. Goldberg; Sylvia Õunpuu; Scott L. Delp
The diminished knee flexion associated with stiff-knee gait, a movement abnormality commonly observed in persons with cerebral palsy, is thought to be caused by an over-active rectus femoris muscle producing an excessive knee extension moment during the swing phase of gait. As a result, treatment for stiff-knee gait is aimed at altering swing-phase muscle function. Unfortunately, this treatment strategy does not consistently result in improved knee flexion. We believe this is because multiple factors contribute to stiff-knee gait. Specifically, we hypothesize that many individuals with stiff-knee gait exhibit diminished knee flexion not because they have an excessive knee extension moment during swing, but because they walk with insufficient knee flexion velocity at toe-off. We measured the knee flexion velocity at toe-off and computed the average knee extension moment from toe-off to peak flexion in 17 subjects (18 limbs) with stiff-knee gait and 15 subjects (15 limbs) without movement abnormalities. We used forward dynamic simulation to determine how adjusting each stiff-knee subjects knee flexion velocity at toe-off to normal levels would affect knee flexion during swing. We found that only one of the 18 stiff-knee limbs exhibited an average knee extension moment from toe-off to peak flexion that was larger than normal. However, 15 of the 18 limbs exhibited a knee flexion velocity at toe-off that was below normal. Simulating an increase in the knee flexion velocity at toe-off to normal levels resulted in a normal or greater than normal range of knee flexion for each of these limbs. These results suggest that the diminished knee flexion of many persons with stiff-knee gait may be caused by abnormally low knee flexion velocity at toe-off as opposed to excessive knee extension moments during swing.
Journal of Biomedical Materials Research | 2001
Saryn R. Goldberg; Jeremy L. Gilbert
Samples of Ti-6Al-4V were immersed in physiological solution and abraded via an electrochemical scratch method to observe the development of transient electric fields a finite distance from the scratch event. Transient electric fields were detected near both potentiostatically held and freely corroding samples. Transient currents measured by a potentiostatically held PtIr microelectric probe near a potentiostatically held sample were opposite in sign to those of the mechanically induced sample currents and were found to change character with sample potential, probe potential, and distance from the scratch event. Transient probe currents measured near a freely corroding sample were of the opposite sign as the sample transient near the primary site of oxidation, but were of the same sign near the primary site of reduction. The measured transients are a direct result of the electrochemical processes ongoing during oxide fracture and repassivation and can be sensed several millimeters remote from the abrasion site. A model for the generation of these fields is presented. Possible effects that these potentials may have on cellular structures surrounding an implant are proposed.
Journal of Biomechanics | 2017
B.S. Anahid Ebrahimi; Saryn R. Goldberg; Steven J. Stanhope
The modulation of walking speed results in adaptations to the lower limbs which can be quantified using mechanical work. A 6 degree-of-freedom (DOF) power analysis, which includes additional translations as compared to the 3 DOF (all rotational) approach, is a comprehensive approach for quantifying lower limb work during gait. The purpose of this study was to quantify the speed-related 6 DOF joint and distal foot work adaptations of all the lower extremity limb constituents (hip, knee, ankle, and distal foot) in healthy individuals. Relative constituent 6 DOF work, the amount of constituent work relative to absolute limb work, was calculated during the stance and swing phases of gait. Eight unimpaired adults walked on an instrumented split-belt treadmill at slow, moderate, and typical walking speeds (0.4, 0.6, and 0.8 statures/s, respectively). Using motion capture and force data, 6 DOF powers were calculated for each constituent. Contrary to previously published results, 6 DOF positive relative ankle work and negative relative distal foot work increased significantly with increased speed during stance phase (p<0.05). Similar to previous rotational DOF results in the sagittal plane, negative relative ankle work decreased significantly with increased speed during stance phase (p<0.05). Scientifically, these findings provide new insight into how healthy individuals adapt to increased walking speed and suggest limitations of the rotational DOF approach for quantifying limb work. Clinically, the data presented here for unimpaired limbs can be used to compare with speed-matched data from limbs with impairments.
Gait & Posture | 2017
Anahid Ebrahimi; Saryn R. Goldberg; Jason M. Wilken; Steven J. Stanhope
Work can reveal the mechanism by which movements occur. However, work is less physically intuitive than more common clinical variables such as joint angles, and are scalar quantities which do not have a direction. Therefore, there is a need for a clearly reported and comprehensively calculated approach to easily visualize and facilitate the interpretation of work variables in a clinical setting. We propose the Constituent Lower Extremity Work (CLEW) approach, a general methodology to visualize and interpret cyclic tasks performed by the lower limbs. Using six degree-of-freedom power calculations, we calculated the relative work of the four lower limb constituents (hip, knee, ankle, and distal foot). In a single pie chart, the CLEW approach details the mechanical cost-of-transport, the percentage of positive and negative work performed in stance phase and swing phase, and the individual contributions of positive and negative work from each constituent. This approach can be used to compare the constituent-level adaptations occurring between limbs of individuals with impairments, or within a limb at different gait intensities. In this article, we outline how to generate and interpret the CLEW pie charts in a clinical report. As an example of the utility of the approach, we created a CLEW report using average reference data from eight unimpaired adult subjects walking on a treadmill at 0.8 statures/s (1.4m/s) compared with data from the intact and prosthetic limbs of an individual with a unilateral amputation walking with an above-knee passive prosthesis.
Journal of Biomechanics | 2004
Saryn R. Goldberg; Frank C. Anderson; Marcus G. Pandy; Scott L. Delp
Journal of Biomechanics | 2004
Frank C. Anderson; Saryn R. Goldberg; Marcus G. Pandy; Scott L. Delp
Journal of Biomechanics | 2006
Saryn R. Goldberg; Sylvia Õunpuu; Allison S. Arnold; James R. Gage; Scott L. Delp
Journal of Biomechanics | 2013
Saryn R. Goldberg; Steven J. Stanhope
Corrosion Science | 2011
Morteza Haeri; Saryn R. Goldberg; Jeremy L. Gilbert
Journal of Biomechanics | 2009
Saryn R. Goldberg; Thomas M. Kepple