Sascha A. Kristian
University of California, San Diego
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sascha A. Kristian.
Current Biology | 2006
John T. Buchanan; Amelia Simpson; Ramy K. Aziz; George Y. Liu; Sascha A. Kristian; Malak Kotb; James R. Feramisco; Victor Nizet
The innate immune response plays a crucial role in satisfactory host resolution of bacterial infection. In response to chemotactic signals, neutrophils are early responding cells that migrate in large numbers to sites of infection. The recent discovery of secreted neutrophil extracellular traps (NETs) composed of DNA and histones opened a novel dimension in our understanding of the microbial killing capacity of these specialized leukocytes. M1 serotype strains of the pathogen Group A Streptococcus (GAS) are associated with invasive infections including necrotizing fasciitis (NF) and express a potent DNase (Sda1). Here we apply a molecular genetic approach of allelic replacement mutagenesis, single gene complementation, and heterologous expression to demonstrate that DNase Sda1 is both necessary and sufficient to promote GAS neutrophil resistance and virulence in a murine model of NF. Live fluorescent microscopic cell imaging and histopathological analysis are used to establish for the first time a direct linkage between NET degradation and bacterial pathogenicity. Inhibition of GAS DNase activity with G-actin enhanced neutrophil clearance of the pathogen in vitro and reduced virulence in vivo. The results demonstrate a significant role for NETs in neutrophil-mediated innate immunity, and at the same time identify a novel therapeutic target against invasive GAS infection.
Nature Medicine | 2004
Christopher Weidenmaier; John F. Kokai-Kun; Sascha A. Kristian; Tanya Chanturiya; Hubert Kalbacher; Matthias Gross; Graeme Nicholson; Birgid Neumeister; James Jacob Mond; Andreas Peschel
Colonization of the anterior nares in ∼37% of the population is a major risk factor for severe Staphylococcus aureus infections. Here we show that wall teichoic acid (WTA), a surface-exposed staphylococcal polymer, is essential for nasal colonization and mediates interaction with human nasal epithelial cells. WTA-deficient mutants were impaired in their adherence to nasal cells, and were completely unable to colonize cotton rat nares. This study describes the first essential factor for S. aureus nasal colonization.
The Journal of Infectious Diseases | 2002
L. Vincent Collins; Sascha A. Kristian; Christopher Weidenmaier; Marion Faigle; Kok P. M. van Kessel; Jos A. G. van Strijp; Friedrich Götz; Birgid Neumeister; Andreas Peschel
Staphylococcus aureus is resistant to alpha-defensins, antimicrobial peptides that play an important role in oxygen-independent killing of human neutrophils. The dlt operon mediates d-alanine incorporation into teichoic acids in the staphylococcal cell envelope and is a determinant of defensin resistance. By using S. aureus wild-type (WT) and Dlt- bacteria, the relative contributions of oxygen-dependent and -independent antimicrobial phagocyte components were analyzed. The Dlt- strain was efficiently killed by human neutrophils even in the absence of a functional respiratory burst, whereas the killing of the WT organism was strongly diminished when the respiratory burst was inhibited. Human monocytes, which do not produce defensins, inactivated the WT and Dlt- bacteria with similar efficiencies. In addition, mice injected with the Dlt- strain had significantly lower rates of sepsis and septic arthritis and fewer bacteria in the kidneys, compared with mice infected with the WT strain.
Journal of Bacteriology | 2005
Sascha A. Kristian; Vivekanand Datta; Christopher Weidenmaier; Rita Kansal; Iris Fedtke; Andreas Peschel; Richard L. Gallo; Victor Nizet
Group A streptococcus (GAS) is a leading cause of severe, invasive human infections, including necrotizing fasciitis and toxic shock syndrome. An important element of the mammalian innate defense system against invasive bacterial infections such as GAS is the production of antimicrobial peptides (AMPs) such as cathelicidins. In this study, we identify a specific GAS phenotype that confers resistance to host AMPs. Allelic replacement of the dltA gene encoding d-alanine-d-alanyl carrier protein ligase in an invasive serotype M1 GAS isolate led to loss of teichoic acid d-alanylation and an increase in net negative charge on the bacterial surface. Compared to the wild-type (WT) parent strain, the GAS DeltadltA mutant exhibited increased susceptibility to AMP and lysozyme killing and to acidic pH. While phagocytic uptake of WT and DeltadltA mutants by human neutrophils was equivalent, neutrophil-mediated killing of the DeltadltA strain was greatly accelerated. Furthermore, we observed the DeltadltA mutant to be diminished in its ability to adhere to and invade cultured human pharyngeal epithelial cells, a likely proximal step in the pathogenesis of invasive infection. Thus, teichoic acid d-alanylation may contribute in multiple ways to the propensity of invasive GAS to bypass mucosal defenses and produce systemic infection.
The Journal of Infectious Diseases | 2005
Christopher Weidenmaier; Andreas Peschel; Yan-Qiong Xiong; Sascha A. Kristian; Klaus Dietz; Michael R. Yeaman; Arnold S. Bayer
Wall teichoic acids (WTAs) are major surface components of gram-positive bacteria that have recently been shown to play a key role in nasal colonization by Staphylococcus aureus. In the present study, we assessed the impact that WTAs have on endovascular infections by using a WTA-deficient S. aureus mutant ( Delta tagO). There were no significant differences detected between the isogenic parental strain (SA113) and the Delta tagO mutant in polymorphonuclear leukocyte-mediated opsonophagocytosis; killing by a prototypic platelet microbicidal protein; or binding to platelets, fibronectin, or fibrinogen. However, compared with the parental strain, the Delta tagO mutant adhered considerably less well to human endothelial cells, especially under flow conditions (70.3% reduction; P<.05). Beads coated with WTA bound to endothelium in a dose-dependent manner, suggesting that WTA contributes specifically to this interaction. These in vitro data closely paralleled those from a rabbit model of infective endocarditis in which the Delta tagO mutant was compared with the parental strain. Clearances of staphylococcus from the bloodstream were equivalent, but the Delta tagO mutant showed a significantly reduced capacity to both colonize sterile cardiac vegetations (P<.05) and proliferate within these vegetations, the kidneys, and the spleen (P<.001). We conclude that WTA is an important factor in the induction and progression of endovascular S. aureus infection, likely through a specific interaction with endothelial cells.
The Journal of Infectious Diseases | 2008
Sascha A. Kristian; Timo A. Birkenstock; Ursula Sauder; Dietrich Mack; Friedrich Götz; Regine Landmann
BACKGROUND Biofilm formation is considered to be an important virulence factor of the opportunistic pathogen Staphylococcus epidermidis. We hypothesized that biofilm formation could interfere with the deposition of immunoglobulins and complement on the bacterial surface, leading to diminished activation of the complement system and protection from killing by human phagocytes. METHODS The killing of biofilm-encased and planktonically grown wild-type (wt) S. epidermidis and the killing of an isogenic biofilm-negative ica mutant (ica(-)) by human polymorphonuclear neutrophils (PMNs) were compared. C3a induction and deposition of C3b and immunoglobulin G (IgG) on the bacteria after opsonization with human serum were assessed by enzyme-linked immunosorbent assay, flow cytometry, and electron microscopy. The virulence of the bacterial strains was compared in a mouse model of catheter-associated infection. RESULTS Biofilm-embedded wt S. epidermidis was killed less well by human PMNs and induced more C3a than planktonically grown wt and ica(-) S. epidermidis. However, the deposition of C3b and IgG on the bacterial surface was diminished in biofilm-encased staphylococci. wt S. epidermidis was more virulent in implant-associated infections and was killed more slowly than ica(-) in ex vivo assays of killing by PMNs. CONCLUSIONS The results indicate that prevention of C3b and IgG deposition on the bacterial surface contributes to the biofilm-mediated protection of S. epidermidis from killing by PMNs.
The Journal of Infectious Diseases | 2003
Sascha A. Kristian; Xavier Lauth; Nizet Victor; Friedrich Goetz; Birgid Neumeister; Andreas Peschel; Regine Landmann
Staphylococcus aureus is inherently resistant to cationic antimicrobial peptides because of alanylation of cell envelope teichoic acids. To test the effect of alanylated teichoic acids on virulence and host defense mediated by Toll-like receptor 2 (TLR2), wild-type (wt) S. aureus ATCC35556 (S.a.113) and its isogenic mutant expressing unalanylated teichoic acids (dlt(-)) were compared in a tissue cage infection model that used C57BL/6 wt and TLR2-deficient mice. The minimum infective doses (MID) to establish persistent infection with S.a.113 were 10(3) and 10(2) colony-forming units (cfu) in wt and TLR2(-/-) mice, respectively. The corresponding MID for dlt(-) were 5x105 and 10(3) cfu in wt and TLR2(-/-) mice, respectively. Both mouse strains showed bacterial-load-dependent inflammation with elevations in tumor necrosis factor, macrophage inflammatory protein 2, and leukocytes, with increasing proportions of dead cells. These findings indicate that alanylated teichoic acids contribute to virulence of S. aureus, and TLR2 mediates host defense, which partly targets alanylated teichoic acids.
Infection and Immunity | 2003
Sascha A. Kristian; Manuela Dürr; Jos A. G. van Strijp; Birgid Neumeister; Andreas Peschel
ABSTRACT Staphylococcus aureus achieves resistance to defensins and similar cationic antimicrobial peptides (CAMPs) by modifying anionic membrane lipids via MprF with l-lysine, which leads to repulsion of these host defense molecules. S. aureus ΔmprF, which lacks the modification, was very efficiently killed by neutrophil defensins and CAMP-producing leukocytes, even when oxygen-dependent killing was disrupted, but was as susceptible as wild-type bacteria to inactivation by myeloperoxidase or human monocytes lacking defensins. These results demonstrate the impact and specificity of MprF-mediated CAMP resistance and underscore the role of defensin-like peptides in innate host defense.
Current Drug Targets | 2003
Christopher Weidenmaier; Sascha A. Kristian; Andreas Peschel
Increasing bacterial resistance to virtually all available antibiotics causes an urgent need for new antimicrobial drugs, drug targets and therapeutic concepts. This review focuses on strategies to render bacteria highly susceptible to the antimicrobial arsenal of the immune system by targeting bacterial immune escape mechanisms that are conserved in a major number of pathogens. Virtually all innate molecules that inactivate bacteria, ranging from antimicrobial peptides such as defensins and cathelicidins to bacteriolytic enzymes such as lysozyme and group IIA phospholipase A2, are highly cationic in order to facilitate binding to the anionic bacterial cell envelopes. Bacteria have found ways to modulate their anionic cell wall polymers such as peptidoglycan, lipopolysaccharide, teichoic acid or phospholipids by introducing positively charged groups. Two of these mechanisms involving the transfer of D-alanine into teichoic acids and of L-lysine into phospholipids, respectively, have been identified and characterized in Staphylococcus aureus, a major human pathogen in community- and hospital-acquired infections. Inactivation of the responsible genes, dltABCD for alanylation of teichoic acids and mprF for lysinylation of phosphatidylglycerol, renders S. aureus highly susceptible to many human antimicrobial molecules and leads to profoundly attenuated virulence in several animal models. dltABCD- and mprF-related genes are found in the genomes of many bacterial pathogens indicating that the escape from human host defenses by modulation of the cell envelope is a general trait in pathogenic bacteria. This review suggests that inhibitors of DltABCD or MprF should have great potential in complementing or replacing the conventional antibiotic therapies.
BMC Microbiology | 2008
Dirk Kraus; Silvia Herbert; Sascha A. Kristian; Arya Khosravi; Victor Nizet; Friedrich Götz; Andreas Peschel
BackgroundModification of teichoic acids with D-alanine by the products of the dlt operon protects Gram-positive bacteria against major antimicrobial host defense molecules such as defensins, cathelicidins, myeloperoxidase or phospholipase. The gra RS regulatory genes have recently been implicated in the control of D-alanylation in Staphylococcus aureus.ResultsTo determine the impact of the GraRS regulatory system on resistance to antimicrobial host defense mechanisms and virulence of S. aureus, we compared inactivation of S. aureus SA113 wild type and its isogenic gra RS deletion mutant by the human cathelicidin LL-37 or human neutrophil granulocytes in vitro, and the ability to cause infection in vivo. We show here that gra RS deletion considerably alters bacterial surface charge, increases susceptibility to killing by human neutrophils or the defense peptide LL-37, and attenuates virulence of S. aureus in a mouse infection model.ConclusionOur results indicate that S. aureus can regulate its surface properties in order to overcome innate host defenses.