Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sascha Laubinger is active.

Publication


Featured researches published by Sascha Laubinger.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Dual roles of the nuclear cap-binding complex and SERRATE in pre-mRNA splicing and microRNA processing in Arabidopsis thaliana

Sascha Laubinger; Timo Sachsenberg; Georg Zeller; Wolfgang Busch; Jan U. Lohmann; Gunnar Rätsch; Detlef Weigel

The processing of Arabidopsis thaliana microRNAs (miRNAs) from longer primary transcripts (pri-miRNAs) requires the activity of several proteins, including DICER-LIKE1 (DCL1), the double-stranded RNA-binding protein HYPONASTIC LEAVES1 (HYL1), and the zinc finger protein SERRATE (SE). It has been noted before that the morphological appearance of weak se mutants is reminiscent of plants with mutations in ABH1/CBP80 and CBP20, which encode the two subunits of the nuclear cap-binding complex. We report that, like SE, the cap-binding complex is necessary for proper processing of pri-miRNAs. Inactivation of either ABH1/CBP80 or CBP20 results in decreased levels of mature miRNAs accompanied by apparent stabilization of pri-miRNAs. Whole-genome tiling array analyses reveal that se, abh1/cbp80, and cbp20 mutants also share similar splicing defects, leading to the accumulation of many partially spliced transcripts. This is unlikely to be an indirect consequence of improper miRNA processing or other mRNA turnover pathways, because introns retained in se, abh1/cbp80, and cbp20 mutants are not affected by mutations in other genes required for miRNA processing or for nonsense-mediated mRNA decay. Taken together, our results uncover dual roles in splicing and miRNA processing that distinguish SE and the cap-binding complex from specialized miRNA processing factors such as DCL1 and HYL1.


Plant Journal | 2009

Stress-induced changes in the Arabidopsis thaliana transcriptome analyzed using whole-genome tiling arrays

Georg Zeller; Stefan R. Henz; Christian Widmer; Timo Sachsenberg; Gunnar Rätsch; Detlef Weigel; Sascha Laubinger

The responses of plants to abiotic stresses are accompanied by massive changes in transcriptome composition. To provide a comprehensive view of stress-induced changes in the Arabidopsis thaliana transcriptome, we have used whole-genome tiling arrays to analyze the effects of salt, osmotic, cold and heat stress as well as application of the hormone abscisic acid (ABA), an important mediator of stress responses. Among annotated genes in the reference strain Columbia we have found many stress-responsive genes, including several transcription factor genes as well as pseudogenes and transposons that have been missed in previous analyses with standard expression arrays. In addition, we report hundreds of newly identified, stress-induced transcribed regions. These often overlap with known, annotated genes. The results are accessible through the Arabidopsis thaliana Tiling Array Express (At-TAX) homepage, which provides convenient tools for displaying expression values of annotated genes, as well as visualization of unannotated transcribed regions along each chromosome.


Development | 2006

Arabidopsis SPA proteins regulate photoperiodic flowering and interact with the floral inducer CONSTANS to regulate its stability

Sascha Laubinger; Virginie Marchal; José Gentilhomme; Stephan Wenkel; Jessika Adrian; Seonghoe Jang; Carmen Kulajta; Helen Braun; George Coupland; Ute Hoecker

The four-member SPA protein family of Arabidopsis acts in concert with the E3 ubiquitin ligase COP1 to suppress photomorphogenesis in dark-grown seedlings. Here, we demonstrate that SPA proteins are, moreover, essential for photoperiodic flowering. Mutations in SPA1 cause phyA-independent early flowering under short day (SD) but not long day (LD) conditions, and this phenotype is enhanced by additional loss of SPA3 and SPA4 function. These spa1 spa3 spa4 triple mutants flower at the same time in LD and SD, indicating that the SPA gene family is essential for the inhibition of flowering under non-inductive SD. Among the four SPA genes, SPA1 is necessary and sufficient for normal photoperiodic flowering. Early flowering of SD-grown spa mutant correlates with strongly increased FT transcript levels, whereas CO transcript levels are not altered. Epistasis analysis demonstrates that both early flowering and FT induction in spa1 mutants is fully dependent on CO. Consistent with this finding, SPA proteins interact physically with CO in vitro and in vivo, suggesting that SPA proteins regulate CO protein function. Domain mapping shows that the SPA1-CO interaction requires the CCT-domain of CO, but is independent of the B-box type Zn fingers of CO. We further show that spa1 spa3 spa4 mutants exhibit strongly increased CO protein levels, which are not caused by a change in CO gene expression. Taken together, our results suggest, that SPA proteins regulate photoperiodic flowering by controlling the stability of the floral inducer CO.


The Plant Cell | 2010

MicroRNA Gene Evolution in Arabidopsis lyrata and Arabidopsis thaliana

Noah Fahlgren; Sanjuro Jogdeo; Kristin D. Kasschau; Christopher M. Sullivan; Elisabeth J. Chapman; Sascha Laubinger; Lisa M. Smith; Mark Dasenko; Scott A. Givan; Detlef Weigel; James C. Carrington

A whole-genome analysis of MIRNA from Arabidopsis thaliana and close relative Arabidopsis lyrata suggests that evolutionarily young MIRNA are diverging in sequence and function more rapidly than are more deeply conserved MIRNA. These and other results shed light on the birth, divergence, and death of MIRNA genes in plants. MicroRNAs (miRNAs) are short regulatory RNAs processed from partially self-complementary foldbacks within longer MIRNA primary transcripts. Several MIRNA families are conserved deeply through land plants, but many are present only in closely related species or are species specific. The finding of numerous evolutionarily young MIRNA, many with low expression and few if any targets, supports a rapid birth-death model for MIRNA evolution. A systematic analysis of MIRNA genes and families in the close relatives, Arabidopsis thaliana and Arabidopsis lyrata, was conducted using both whole-genome comparisons and high-throughput sequencing of small RNAs. Orthologs of 143 A. thaliana MIRNA genes were identified in A. lyrata, with nine having significant sequence or processing changes that likely alter function. In addition, at least 13% of MIRNA genes in each species are unique, despite their relatively recent speciation (∼10 million years ago). Alignment of MIRNA foldbacks to the Arabidopsis genomes revealed evidence for recent origins of 32 families by inverted or direct duplication of mostly protein-coding gene sequences, but less than half of these yield miRNA that are predicted to target transcripts from the originating gene family. miRNA nucleotide divergence between A. lyrata and A. thaliana orthologs was higher for young MIRNA genes, consistent with reduced purifying selection compared with deeply conserved MIRNA genes. Additionally, target sites of younger miRNA were lost more frequently than for deeply conserved families. In summary, our systematic analyses emphasize the dynamic nature of the MIRNA complement of plant genomes.


The Plant Cell | 2004

The SPA Quartet: A Family of WD-Repeat Proteins with a Central Role in Suppression of Photomorphogenesis in Arabidopsis

Sascha Laubinger; Kirsten Fittinghoff; Ute Hoecker

The Arabidopsis thaliana proteins suppressor of phytochrome A-105 1 (SPA1), SPA3, and SPA4 of the four-member SPA1 protein family have been shown to repress photomorphogenesis in light-grown seedlings. Here, we demonstrate that spa quadruple mutant seedlings with defects in SPA1, SPA2, SPA3, and SPA4 undergo strong constitutive photomorphogenesis in the dark. Consistent with this finding, adult spa quadruple mutants are extremely small and dwarfed. These extreme phenotypes are only observed when all SPA genes are mutated, indicating functional redundancy among SPA genes. Differential contributions of individual SPA genes were revealed by analysis of spa double and triple mutant genotypes. SPA1 and SPA2 predominate in dark-grown seedlings, whereas SPA3 and SPA4 prevalently regulate the elongation growth in adult plants. Further analysis of SPA2 function indicated that SPA2 is a potent repressor of photomorphogenesis only in the dark but not in the light. The SPA2 protein is constitutively nuclear localized in planta and can physically interact with the repressor COP1. Epistasis analysis between spa2 and cop1 mutations provides strong genetic support for a biological significance of a COP1–SPA2 interaction in the plant. Taken together, our results have identified a new family of proteins that is essential for suppression of photomorphogenesis in darkness.


The Plant Cell | 2008

Biochemical Characterization of Arabidopsis Complexes Containing CONSTITUTIVELY PHOTOMORPHOGENIC1 and SUPPRESSOR OF PHYA Proteins in Light Control of Plant Development

Danmeng Zhu; Alexander Maier; Jae-Hoon Lee; Sascha Laubinger; Yusuke Saijo; Haiyang Wang; Li-Jia Qu; Ute Hoecker; Xing Wang Deng

COP1 (for CONSTITUTIVELY PHOTOMORPHOGENIC1) and the four partially redundant SPA (for SUPPRESSOR OF PHYA) proteins work in concert to repress photomorphogenesis in Arabidopsis thaliana by targeting key transcription factors and phytochrome A for degradation via the 26S proteasome. Here, we report a detailed biochemical characterization of the SPA-COP1 complexes. The four endogenous SPA proteins can form stable complexes with COP1 in vivo regardless of light conditions but exhibit distinct expression profiles in different tissues and light conditions. The SPA proteins can self-associate or interact with each other, forming a heterogeneous group of SPA-COP1 complexes in which the exact SPA protein compositions vary depending on the abundance of individual SPA proteins. The four SPA proteins could be divided into two functional groups depending on their interaction affinities, their regulation of ELONGATED HYPOCOTYL5 degradation, and their opposite effects on COP1 protein accumulation. Loss-of-function mutations in a predominant SPA protein may cause a significant reduction in the overall SPA-COP1 E3 ligase activity, resulting in a partial constitutive photomorphogenic phenotype. This study thus provides an in-depth biochemical view of the SPA-COP1 E3 ligase complexes and offers new insights into the molecular basis for their distinct roles in the light control of plant development.


Cell | 2012

Fast-Forward Genetics Identifies Plant CPL Phosphatases as Regulators of miRNA Processing Factor HYL1

Pablo A. Manavella; Jörg Hagmann; Felix Ott; Sascha Laubinger; Mirita Franz; Boris Macek; Detlef Weigel

MicroRNAs (miRNAs) are processed from primary transcripts that contain partially self-complementary foldbacks. As in animals, the core microprocessor in plants is a Dicer protein, DICER-LIKE1 (DCL1). Processing accuracy and strand selection is greatly enhanced through the RNA binding protein HYPONASTIC LEAVES 1 (HYL1) and the zinc finger protein SERRATE (SE). We have combined a luciferase-based genetic screen with whole-genome sequencing for rapid identification of new regulators of miRNA biogenesis and action. Among the first six mutants analyzed were three alleles of C-TERMINAL DOMAIN PHOSPHATASE-LIKE 1 (CPL1)/FIERY2 (FRY2). In the miRNA processing complex, SE functions as a scaffold to mediate CPL1 interaction with HYL1, which needs to be dephosphorylated for optimal activity. In the absence of CPL1, HYL1 dephosphorylation and hence accurate processing and strand selection from miRNA duplexes are compromised. Our findings thus define a new regulatory step in plant miRNA biogenesis.


Genome Biology | 2008

At-TAX: a whole genome tiling array resource for developmental expression analysis and transcript identification in Arabidopsis thaliana.

Sascha Laubinger; Georg Zeller; Stefan R. Henz; Timo Sachsenberg; Christian Widmer; Naïra Naouar; Marnik Vuylsteke; Bernhard Schölkopf; Gunnar Rätsch; Detlef Weigel

Gene expression maps for model organisms, including Arabidopsis thaliana, have typically been created using gene-centric expression arrays. Here, we describe a comprehensive expression atlas, Arabidopsis thaliana Tiling Array Express (At-TAX), which is based on whole-genome tiling arrays. We demonstrate that tiling arrays are accurate tools for gene expression analysis and identified more than 1,000 unannotated transcribed regions. Visualizations of gene expression estimates, transcribed regions, and tiling probe measurements are accessible online at the At-TAX homepage.


Plant Physiology | 2010

AGRONOMICS1: a new resource for Arabidopsis transcriptome profiling.

Hubert Rehrauer; Catharine Aquino; Wilhelm Gruissem; Stefan R. Henz; Pierre Hilson; Sascha Laubinger; Naïra Naouar; Andrea Patrignani; Stephane Rombauts; Huan Shu; Yves Van de Peer; Marnik Vuylsteke; Detlef Weigel; Georg Zeller; Lars Hennig

Transcriptome profiling has become a routine tool in biology. For Arabidopsis (Arabidopsis thaliana), the Affymetrix ATH1 expression array is most commonly used, but it lacks about one-third of all annotated genes present in the reference strain. An alternative are tiling arrays, but previous designs have not allowed the simultaneous analysis of both strands on a single array. We introduce AGRONOMICS1, a new Affymetrix Arabidopsis microarray that contains the complete paths of both genome strands, with on average one 25mer probe per 35-bp genome sequence window. In addition, the new AGRONOMICS1 array contains all perfect match probes from the original ATH1 array, allowing for seamless integration of the very large existing ATH1 knowledge base. The AGRONOMICS1 array can be used for diverse functional genomics applications such as reliable expression profiling of more than 30,000 genes, detection of alternative splicing, and chromatin immunoprecipitation coupled to microarrays (ChIP-chip). Here, we describe the design of the array and compare its performance with that of the ATH1 array. We find results from both microarrays to be of similar quality, but AGRONOMICS1 arrays yield robust expression information for many more genes, as expected. Analysis of the ATH1 probes on AGRONOMICS1 arrays produces results that closely mirror those of ATH1 arrays. Finally, the AGRONOMICS1 array is shown to be useful for ChIP-chip experiments. We show that heterochromatic H3K9me2 is strongly confined to the gene body of target genes in euchromatic chromosome regions, suggesting that spreading of heterochromatin is limited outside of pericentromeric regions.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Global effects of the small RNA biogenesis machinery on the Arabidopsis thaliana transcriptome

Sascha Laubinger; Georg Zeller; Stefan R. Henz; Sabine Buechel; Timo Sachsenberg; Jia-Wei Wang; Gunnar Rätsch; Detlef Weigel

In Arabidopsis thaliana, four different dicer-like (DCL) proteins have distinct but partially overlapping functions in the biogenesis of microRNAs (miRNAs) and siRNAs from longer, noncoding precursor RNAs. To analyze the impact of different components of the small RNA biogenesis machinery on the transcriptome, we subjected dcl and other mutants impaired in small RNA biogenesis to whole-genome tiling array analysis. We compared both protein-coding genes and noncoding transcripts, including most pri-miRNAs, in two tissues and several stress conditions. Our analysis revealed a surprising number of common targets in dcl1 and dcl2 dcl3 dcl4 triple mutants. Furthermore, our results suggest that the DCL1 is not only involved in miRNA action but also contributes to silencing of a subset of transposons, apparently through an effect on DNA methylation.

Collaboration


Dive into the Sascha Laubinger's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Boris Macek

University of Tübingen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge