Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sashi Kesavapany is active.

Publication


Featured researches published by Sashi Kesavapany.


Journal of Neurochemistry | 2009

Phosphorylation of thr668 in the cytoplasmic domain of the Alzheimer's disease amyloid precursor protein by stress-activated protein kinase 1b (Jun N-terminal kinase-3)

Claire L. Standen; Janet Brownlees; Andrew J. Grierson; Sashi Kesavapany; Kwok-Fai Lau; Declan M. McLoughlin; Christopher Miller

Threonine668 (thr668) within the carboxy‐terminus of the Alzheimers disease amyloid precursor protein (APP) is a known in vivo phosphorylation site. Phosphorylation of APPthr668 is believed to regulate APP function and metabolism. Thr668 precedes a proline, which suggests that it is targeted for phosphorylation by proline‐directed kinase(s). We have investigated the ability of four major neuronally active proline‐directed kinases, cyclin dependent protein kinase‐5, glycogen synthase kinase‐3β, p42 mitogen‐activated protein kinase and stress‐activated protein kinase‐1b, to phosphorylate APPthr668 and report here that SAPK1b induces robust phosphorylation of this site both in vitro and in vivo. This finding provides a molecular framework to link cellular stresses with APP metabolism in both normal and disease states.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Cyclin-dependent kinase 5 modulates nociceptive signaling through direct phosphorylation of transient receptor potential vanilloid 1

Tej K. Pareek; Jason Keller; Sashi Kesavapany; Nitin Agarwal; Rohini Kuner; Harish C. Pant; Michael J. Iadarola; Roscoe O. Brady; Ashok B. Kulkarni

Transient receptor potential vanilloid 1 (TRPV1), a ligand-gated cation channel highly expressed in small-diameter sensory neurons, is activated by heat, protons, and capsaicin. The phosphorylation of TRPV1 provides a versatile regulation of intracellular calcium levels and is critical for TRPV1 function in responding to a pain stimulus. We have previously reported that cyclin-dependent kinase 5 (Cdk5) activity regulates nociceptive signaling. In this article we report that the Cdk5-mediated phosphorylation of TRPV1 at threonine-407 can modulate agonist-induced calcium influx. Inhibition of Cdk5 activity in cultured dorsal root ganglia neurons resulted in a significant reduction of TRPV1-mediated calcium influx, and this effect could be reversed by restoring Cdk5 activity. Primary nociceptor-specific Cdk5 conditional-knockout mice showed reduced TRPV1 phosphorylation, resulting in significant hypoalgesia. Thus, the present study indicates that Cdk5-mediated TRPV1 phosphorylation is important in the regulation of pain signaling.


Journal of Biological Chemistry | 2004

The c-Abl Tyrosine Kinase Phosphorylates the Fe65 Adaptor Protein to Stimulate Fe65/Amyloid Precursor Protein Nuclear Signaling

Michael S. Perkinton; Claire L. Standen; Kwok-Fai Lau; Sashi Kesavapany; Helen Byers; Malcolm Ward; Declan M. McLoughlin; Christopher Miller

The amyloid precursor protein (APP) is proteolytically processed to release a C-terminal domain that signals to the nucleus to regulate transcription of responsive genes. The APP C terminus binds to a number of phosphotyrosine binding (PTB) domain proteins and one of these, Fe65, stimulates APP nuclear signaling. Fe65 is an adaptor protein that contains a number of protein-protein interaction domains. These include two PTB domains, the second of which binds APP, and a WW domain that binds proline-rich ligands. One ligand for the Fe65WW domain is the tyrosine kinase c-Abl. Here, we show that active c-Abl stimulates APP/Fe65-mediated gene transcription and that this effect is mediated by phosphorylation of Fe65 on tyrosine 547 within its second PTB domain. The homologous tyrosine within the motif Tyr-(Leu/Met)-Gly is conserved in a variety of PTB domains, and this suggests that PTB tyrosine phosphorylation occurs in other proteins. As such, PTB domain phosphorylation may represent a novel mechanism for regulating the function of this class of protein.


The Journal of Neuroscience | 2008

Cyclin-Dependent Kinase 5 Phosphorylation of Human Septin SEPT5 (hCDCrel-1) Modulates Exocytosis

Niranjana D. Amin; Ya-Li Zheng; Sashi Kesavapany; Jyotshnabala Kanungo; Tad Guszczynski; Ram K. Sihag; Parvathi Rudrabhatla; Wayne Albers; Philip Grant; Harish C. Pant

Cyclin-dependent kinase 5 (Cdk5) is predominantly expressed in the nervous system, where it is involved in neuronal migration, synaptic transmission, and survival. The role of Cdk5 in synaptic transmission is mediated by regulating the cellular functions of presynaptic proteins such as synapsin, Munc18, and dynamin 1. Its multifunctional role at the synapse is complex and probably involves other novel substrates. To explore this possibility, we used a yeast two-hybrid screen of a human cDNA library with p35 as bait and isolated human septin 5 (SEPT5), known also as hCDCrel-1, as an interacting clone. Here we report that p35 associates with SEPT5 in GST (glutathione S-transferase)-pull-down and coimmunoprecipitation assays. We confirmed that Cdk5/p35 phosphorylates SEPT5 in vitro and in vivo and identified S327 of SEPT5 as a major phosphorylation site. A serine (S)-to-alanine (A) 327 mutant of SEPT5 bound syntaxin more efficiently than SEPT5 wild type. Additionally, coimmunoprecipitation from synaptic vesicle fractions and Cdk5 wild-type and knock-out lysates showed that phosphorylation of septin 5 by Cdk5/p35 decreases its binding to syntaxin-1. Moreover, mutant nonphosphorylated SEPT5 potentiated regulated exocytosis more than the wild type when each was expressed in PC12 cells. These data suggest that Cdk5 phosphorylation of human septin SEPT5 at S327 plays a role in modulating exocytotic secretion.


Molecular and Cellular Neuroscience | 2002

Cyclin-Dependent Kinase-5/p35 Phosphorylates Presenilin 1 to Regulate Carboxy-Terminal Fragment Stability

Kwok-Fai Lau; David R. Howlett; Sashi Kesavapany; Claire L. Standen; Colin Dingwall; Declan M. McLoughlin; Christopher Miller

Mutations in the Presenilin 1 gene are the cause of the majority of autosomal dominant familial forms of Alzheimers disease. Presenilin 1 (PS1) is produced as a holoprotein but is then rapidly processed to amino- (N-PS1) and carboxy-terminal (C-PS1) fragments that are incorporated into stable high molecular mass complexes. The mechanisms that control PS1 cleavage and stability are not properly understood but sequences within C-PS1 have been shown to regulate both of these properties. Here we demonstrate that cyclin dependent kinase-5/p35 (cdk5/p35) phosphorylates PS1 on threonine(354) within C-PS1 both in vitro and in vivo. Threonine(354) phosphorylation functions to selectively stabilize C-PS1. Our results demonstrate that cdk5/p35 is a regulator of PS1 metabolism.


The Journal of Neuroscience | 2004

p35/Cyclin-Dependent Kinase 5 Phosphorylation of Ras Guanine Nucleotide Releasing Factor 2 (RasGRF2) Mediates Rac-Dependent Extracellular Signal-Regulated Kinase 1/2 Activity, Altering RasGRF2 and Microtubule-Associated Protein 1b Distribution in Neurons

Sashi Kesavapany; Niranjana D. Amin; Ya-Li Zheng; Ruchika Nijhara; Howard Jaffe; Ram K. Sihag; J. Silvio Gutkind; Satoru Takahashi; Ashok B. Kulkarni; Philip Grant; Harish C. Pant

Cyclin-dependent kinase 5 (Cdk5) is a proline-directed kinase the activity of which is dependent on association with its neuron-specific activators, p35 and p39. Cdk5 activity is critical for the proper formation of cortical structures and lamination during development. In the adult nervous system, Cdk5 function is implicated in cellular adhesion, dopamine signaling, neurotransmitter release, and synaptic activity. In addition, Cdk5 is also involved in “cross-talk” with other signal transduction pathways. To further examine its involvement in cross-talk with other pathways, we identified proteins that interacted with p35 using the yeast two-hybrid system. We report here that p35 associates with Ras guanine nucleotide releasing factor 2 (RasGRF2) in coimmunoprecipitation and colocalization studies using transfected cell lines as well as primary cortical neurons. Additionally, Cdk5 phosphorylates RasGRF2 both in vitro and in vivo, leading to a decrease in Rac–guanidine exchange factor activity and a subsequent reduction in extracellular signal-regulated kinase 1/2 activity. We show that p35/Cdk5 phosphorylates RasGRF2 on serine737, which leads to an accumulation of RasGRF2 in the neuronal cell bodies coinciding with an accumulation of microtubule-associated protein 1b. The membrane association of p35 and subsequent localization of Cdk5 activity toward RasGRF2 and Rac provide insights into important cellular signaling processes that occur at the membrane, resulting in downstream effects on signal transduction cascades.


The Journal of Neuroscience | 2012

Cdk5/p25-Induced Cytosolic PLA2-Mediated Lysophosphatidylcholine Production Regulates Neuroinflammation and Triggers Neurodegeneration

Jeyapriya Raja Sundaram; Elizabeth S. Chan; Charlene Priscilla Poore; Tej K. Pareek; Wei Fun Cheong; Guanghou Shui; Ning Tang; Chian-Ming Low; Markus R. Wenk; Sashi Kesavapany

The deregulation of cyclin-dependent kinase 5 (Cdk5) by p25 has been shown to contribute to the pathogenesis in a number of neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS), Parkinsons disease (PD) and Alzheimers disease (AD). In particular, p25/Cdk5 has been shown to produce hyperphosphorylated tau, neurofibrillary tangles as well as aberrant amyloid precursor protein processing found in AD. Neuroinflammation has been observed alongside the pathogenic process in these neurodegenerative diseases, however the precise mechanism behind the induction of neuroinflammation and the significance in the AD pathogenesis has not been fully elucidated. In this report, we uncover a novel pathway for p25-induced neuroinflammation where p25 expression induces an early trigger of neuroinflammation in vivo in mice. Lipidomic mass spectrometry, in vitro coculture and conditioned media transfer experiments show that the soluble lipid mediator lysophosphatidylcholine (LPC) is released by p25 overexpressing neurons to initiate astrogliosis, neuroinflammation and subsequent neurodegeneration. Reverse transcriptase PCR and gene silencing experiments show that cytosolic phospholipase 2 (cPLA2) is the key enzyme mediating the p25-induced LPC production and cPLA2 upregulation is critical in triggering the p25-mediated inflammatory and neurodegenerative process. Together, our findings delineate a potential therapeutic target for the reduction of neuroinflammation in neurodegenerative diseases including AD.


Neuroscience | 2002

Expression of the Fe65 adapter protein in adult and developing mouse brain

Sashi Kesavapany; S Banner; Kwok-Fai Lau; Christopher Shaw; Christopher Miller; Jonathan D. Cooper; Declan M. McLoughlin

Fe65 is a multimodular adaptor protein expressed mainly in the nervous system. Fe65 binds to the Alzheimers disease amyloid precursor protein (APP) and the interaction is mediated via a phosphotyrosine binding domain in Fe65 and the carboxy-terminal cytoplasmic domain of APP. Fe65 modulates trafficking and processing of APP, including production of the beta-amyloid peptide that is believed to be central to the pathogenesis of Alzheimers disease. Fe65 also facilitates translocation of a carboxy-terminal fragment of APP to the nucleus and is required for APP-mediated transcription events. In addition, Fe65 functions in regulation of the actin cytoskeleton and cell movement. Here we report the distribution profile of Fe65 immunoreactivity in adult mouse brain. Fe65 expression was found to be widespread in neurones in adult brain. The areas of highest expression included regions of the hippocampus in which the earliest abnormalities of Alzheimers disease are detectable. Fe65 was also highly expressed in the cerebellum, thalamus and selected brain stem nuclei. Fe65 was evident in a sub-set of astrocytes within the stratum oriens and radiatum in the hippocampus. Expression of Fe65 was found to be developmentally regulated with levels reducing after embryonic day 15 and increasing again progressively from post-partum day 10 up to adulthood, a developmental pattern that partially parallels that of APP. These data indicate a widespread distribution of Fe65 in neurones throughout mouse brain and also suggest that Fe65 may have functions independent of APP and any potential role in the pathogenesis of Alzheimers disease.


Journal of Biological Chemistry | 2010

A 24-Residue Peptide (p5), Derived from p35, the Cdk5 Neuronal Activator, Specifically Inhibits Cdk5-p25 Hyperactivity and Tau Hyperphosphorylation

Ya-Li Zheng; Niranjana D. Amin; Ya-Fang Hu; Parvathi Rudrabhatla; Varsha Shukla; Jyotshnabala Kanungo; Sashi Kesavapany; Philip Grant; Wayne Albers; Harish C. Pant

The activity of Cdk5-p35 is tightly regulated in the developing and mature nervous system. Stress-induced cleavage of the activator p35 to p25 and a p10 N-terminal domain induces deregulated Cdk5 hyperactivity and perikaryal aggregations of hyperphosphorylated Tau and neurofilaments, pathogenic hallmarks in neurodegenerative diseases, such as Alzheimer disease and amyotrophic lateral sclerosis, respectively. Previously, we identified a 125-residue truncated fragment of p35 called CIP that effectively and specifically inhibited Cdk5-p25 activity and Tau hyperphosphorylation induced by Aβ peptides in vitro, in HEK293 cells, and in neuronal cells. Although these results offer a possible therapeutic approach to those neurodegenerative diseases assumed to derive from Cdk5-p25 hyperactivity and/or Aβ induced pathology, CIP is too large for successful therapeutic regimens. To identify a smaller, more effective peptide, in this study we prepared a 24-residue peptide, p5, spanning CIP residues Lys245–Ala277. p5 more effectively inhibited Cdk5-p25 activity than did CIP in vitro. In neuron cells, p5 inhibited deregulated Cdk5-p25 activity but had no effect on the activity of endogenous Cdk5-p35 or on any related endogenous cyclin-dependent kinases in HEK293 cells. Specificity of p5 inhibition in cortical neurons may depend on the p10 domain in p35, which is absent in p25. Furthermore, we have demonstrated that p5 reduced Aβ(1–42)-induced Tau hyperphosphorylation and apoptosis in cortical neurons. These results suggest that p5 peptide may be a unique and useful candidate for therapeutic studies of certain neurodegenerative diseases.


Journal of Biological Chemistry | 2008

Pin1-dependent Prolyl Isomerization Modulates the Stress-induced Phosphorylation of High Molecular Weight Neurofilament Protein

Parvathi Rudrabhatla; Ya-Li Zheng; Niranjana D. Amin; Sashi Kesavapany; Wayne Albers; Harish C. Pant

Aberrant phosphorylation of neuronal cytoskeletal proteins is a key pathological event in neurodegenerative disorders such as Alzheimer disease (AD) and amyotrophic lateral sclerosis, but the underlying mechanisms are still unclear. Previous studies have shown that Pin1, a peptidylprolyl cis/trans-isomerase, may be actively involved in the regulation of Tau hyperphosphorylation in AD. Here, we show that Pin1 modulates oxidative stress-induced NF-H phosphorylation. In an in vitro kinase assay, the addition of Pin1 substantially increased phosphorylation of NF-H KSP repeats by proline-directed kinases, Erk1/2, Cdk5/p35, and JNK3 in a concentration-dependent manner. In vivo, dominant-negative (DN) Pin1 and Pin1 small interfering RNA inhibited epidermal growth factor-induced NF-H phosphorylation. Because oxidative stress plays an important role in the pathogenesis of neurodegenerative diseases, we studied the role of Pin1 in stressed cortical neurons and HEK293 cells. Both hydrogen peroxide (H2O2) and heat stresses induce phosphorylation of NF-H in transfected HEK293 cells and primary cortical cultures. Knockdown of Pin1 by transfected Pin1 short interference RNA and DN-Pin1 rescues the effect of stress-induced NF-H phosphorylation. The H2O2 and heat shock induced perikaryal phospho-NF-H accumulations, and neuronal apoptosis was rescued by inhibition of Pin1 in cortical neurons. JNK3, a brain-specific JNK isoform, is activated under oxidative and heat stresses, and inhibition of Pin1 by Pin1 short interference RNA and DN-Pin1 inhibits this pathway. These results implicate Pin1 as a possible modulator of stress-induced NF-H phosphorylation as seen in neurodegenerative disorders like AD and amyotrophic lateral sclerosis. Thus, Pin1 may be a potential therapeutic target for these diseases.

Collaboration


Dive into the Sashi Kesavapany's collaboration.

Top Co-Authors

Avatar

Harish C. Pant

Michigan State University

View shared research outputs
Top Co-Authors

Avatar

Niranjana D. Amin

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Ya-Li Zheng

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tej K. Pareek

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Kwok-Fai Lau

The Chinese University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Philip Grant

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge