Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sashko G. Spassov is active.

Publication


Featured researches published by Sashko G. Spassov.


Medical gas research | 2012

Inhaled hydrogen sulfide protects against lipopolysaccharide-induced acute lung injury in mice

Simone Faller; Kornelia K. Zimmermann; Karl M. Strosing; Helen Engelstaedter; Hartmut Buerkle; Rene Schmidt; Sashko G. Spassov; Alexander Hoetzel

BackgroundLocal pulmonary and systemic infections can lead to acute lung injury (ALI). The resulting lung damage can evoke lung failure and multiple organ dysfunction associated with increased mortality. Hydrogen sulfide (H2S) appears to represent a new therapeutic approach to ALI. The gas has been shown to mediate potent anti-inflammatory and organ protective effects in vivo. This study was designed to define its potentially protective role in sepsis-induced lung injury.MethodsC57BL/6 N mice received lipopolysaccharide (LPS) intranasally in the absence or presence of 80 parts per million H2S. After 6 h, acute lung injury was determined by comparative histology. Bronchoalveolar lavage (BAL) fluid was analyzed for total protein content and differential cell counting. BAL and serum were further analyzed for interleukin-1β, macrophage inflammatory protein-2, and/or myeloperoxidase glycoprotein levels by enzyme-linked immunosorbent assays. Differences between groups were analyzed by one way analysis of variance.ResultsHistological analysis revealed that LPS instillation led to increased alveolar wall thickening, cellular infiltration, and to an elevated ALI score. In the presence of H2S these changes were not observed despite LPS treatment. Moreover, neutrophil influx, and pro-inflammatory cytokine release were enhanced in BAL fluid of LPS-treated mice, but comparable to control levels in H2S treated mice. In addition, myeloperoxidase levels were increased in serum after LPS challenge and this was prevented by H2S inhalation.ConclusionInhalation of hydrogen sulfide protects against LPS-induced acute lung injury by attenuating pro-inflammatory responses.


Current Pharmaceutical Design | 2013

Hydrogen Sulfide Prevents Hyperoxia-induced Lung Injury by Downregulating Reactive Oxygen Species Formation and Angiopoietin-2 Release

Simone Faller; Sashko G. Spassov; Kornelia K. Zimmermann; Stefan W. Ryter; Hartmut Buerkle; Torsten Loop; Rene Schmidt; Karl M. Strosing; Alexander Hoetzel

Oxygen therapy is a life-sustaining treatment for patients with respiratory failure. However, prolonged exposure to high oxygen concentrations often results in hyperoxia-induced acute lung injury (HALI). At present, no effective therapeutic intervention can attenuate the development of HALI. In the present study, we investigated whether hydrogen sulfide (H2S) can confer lung protection in a mouse model of HALI. C57BL/6 mice were either exposed to room air or 90 vol% oxygen and received either the H2S donor sodium hydrosulfide (NaHS, 10 mg/kg) or vehicle. Lung injury was assessed by an HALI score in tissue sections. Bronchoalveolar lavage fluid was analyzed for protein content and cellular infiltration. Reactive oxygen species (ROS) were detected by dihydroethidium staining. Angiopoietin- 2 was detected by Western Blotting. Pulmonary epithelial, endothelial, and macrophage cells were stimulated to produce ROS either in the absence or presence of NaHS. Mice exposed to hyperoxia developed substantial lung injury, characterized by an elevated HALI score, cellular infiltration, protein leakage, ROS production, and overexpression of angiopoietin-2. NaHS treatment abolished morphological indices of HALI. Angiopoietin-2 expression was significantly reduced by NaHS in vivo. In endothelial cells and macrophages, angiopoietin-2 was released due to ROS formation and decreased in the presence of NaHS. In conclusion, H2S protects from HALI by preventing ROS production and angiopoietin-2 release.


Laboratory Investigation | 2012

Kinetic effects of carbon monoxide inhalation on tissue protection in ventilator-induced lung injury

Simone Faller; Michael Foeckler; Karl M. Strosing; Sashko G. Spassov; Stefan W. Ryter; Hartmut Buerkle; Torsten Loop; Rene Schmidt; Alexander Hoetzel

Mechanical ventilation causes ventilator-induced lung injury (VILI), and contributes to acute lung injury/acute respiratory distress syndrome (ALI/ARDS), a disease with high morbidity and mortality among critically ill patients. Carbon monoxide (CO) can confer lung protective effects during mechanical ventilation. This study investigates the time dependency of CO therapy with respect to lung protection in animals subjected to mechanical ventilation. For this purpose, mice were ventilated with a tidal volume of 12 ml/kg body weight for 6 h with air in the absence or presence of CO (250 parts per million). Histological analysis of lung tissue sections was used to determine alveolar wall thickening and the degree of lung damage by VILI score. Bronchoalveolar lavage fluid was analyzed for total cellular influx, neutrophil accumulation, and interleukin-1β release. As the main results, mechanical ventilation induced pulmonary edema, cytokine release, and neutrophil recruitment. In contrast, application of CO for 6 h prevented VILI. Although CO application for 3 h followed by 3-h air ventilation failed to prevent lung injury, a further reduction of CO application time to 1 h in this setting provided sufficient protection. Pre-treatment of animals with inhaled CO for 1 h before ventilation showed no beneficial effect. Delayed application of CO beginning at 3 or 5 h after initiation of ventilation, reduced lung damage, total cell influx, and neutrophil accumulation. In conclusion, administration of CO for 6 h protected against VILI. Identical protective effects were achieved by limiting the administration of CO to the first hour of ventilation. Pre-treatment with CO had no impact on VILI. In contrast, delayed application of CO led to anti-inflammatory effects with time-dependent reduction in tissue protection.


Oxidative Medicine and Cellular Longevity | 2017

Hydrogen Sulfide Prevents Formation of Reactive Oxygen Species through PI3K/Akt Signaling and Limits Ventilator-Induced Lung Injury

Sashko G. Spassov; Rosa Donus; Paul Mikael Ihle; Helen Engelstaedter; Alexander Hoetzel; Simone Faller

The development of ventilator-induced lung injury (VILI) is still a major problem in mechanically ventilated patients. Low dose inhalation of hydrogen sulfide (H2S) during mechanical ventilation has been proven to prevent lung damage by limiting inflammatory responses in rodent models. However, the capacity of H2S to affect oxidative processes in VILI and its underlying molecular signaling pathways remains elusive. In the present study we show that ventilation with moderate tidal volumes of 12 ml/kg for 6 h led to an excessive formation of reactive oxygen species (ROS) in mice lungs which was prevented by supplemental inhalation of 80 parts per million of H2S. In addition, phosphorylation of the signaling protein Akt was induced by H2S. In contrast, inhibition of Akt by LY294002 during ventilation reestablished lung damage, neutrophil influx, and proinflammatory cytokine release despite the presence of H2S. Moreover, the ability of H2S to induce the antioxidant glutathione and to prevent ROS production was reversed in the presence of the Akt inhibitor. Here, we provide the first evidence that H2S-mediated Akt activation is a key step in protection against VILI, suggesting that Akt signaling limits not only inflammatory but also detrimental oxidative processes that promote the development of lung injury.


Anesthesia & Analgesia | 2016

Inhaled Anesthetics Exert Different Protective Properties in a Mouse Model of Ventilator-Induced Lung Injury.

Karl M. Strosing; Simone Faller; Veronica Gyllenram; Helen Engelstaedter; Hartmut Buerkle; Sashko G. Spassov; Alexander Hoetzel

BACKGROUND:Mechanical ventilation is an important perioperative tool in anesthesia and a lifesaving treatment for respiratory failure, but it can lead to ventilator-associated lung injury. Inhaled anesthetics have demonstrated protective properties in various models of organ damage. We compared the lung-protective potential of inhaled sevoflurane, isoflurane, and desflurane in a mouse model of ventilator-induced lung injury (VILI). METHODS:C57BL/6N mice were randomized into 5 groups (n = 8/group). One group served as a control and 4 groups were subjected to mechanical ventilation with air (12 mL/kg tidal volume) for 6 hours. Ventilated animals were anesthetized with either ketamine and acepromazine, or 1 of 3 inhaled anesthetics: isoflurane, sevoflurane, or desflurane. Lung injury was assessed by lung histology, neutrophil counts, and interleukin-1&bgr; concentrations in bronchoalveolar lavage fluid. Antioxidant effects were explored by evaluation of production of reactive oxygen species (ROS) and glutathione content in lung tissue by immunofluorescence staining and confocal laser scanning microscopy. Changes in intercellular adhesion molecule-1 and src-protein-tyrosine-kinase levels were determined by real-time polymerase chain reaction and Western blot. RESULTS:Compared with nonventilated controls, ventilated mice anesthetized with ketamine had thickened alveolar walls, elevated VILI scores, higher polymorph neutrophil counts, and increased ROS production. Mice anesthetized with isoflurane and sevoflurane showed thinner alveolar septa, lower VILI scores, lower polymorph neutrophil counts, and lower interleukin-1&bgr; concentrations than ketamine mice. The expression of intercellular adhesion molecule-1/src-protein-tyrosine-kinase was neither affected by mechanical ventilation nor affected by administration of inhaled anesthetics. Mice anesthetized with isoflurane and sevoflurane showed less ROS production and higher glutathione contents compared with ketamine mice. Unexpectedly, desflurane-ventilated mice showed similar signs of lung injury compared with mice ventilated with air alone and receiving ketamine anesthesia. Desflurane failed to inhibit inflammatory responses and ROS production in lung tissue and developed no antioxidant potential. CONCLUSIONS:Although isoflurane and sevoflurane prevent ventilator-associated lung injury, desflurane does not. As an underlying mechanism, both inhaled anesthetics exert major anti-inflammatory and antioxidative effects.


PLOS ONE | 2014

Genetic targets of hydrogen sulfide in ventilator-induced lung injury--a microarray study.

Sashko G. Spassov; Dietmar Pfeifer; Karl M. Strosing; Stefan W. Ryter; Matthias Hummel; Simone Faller; Alexander Hoetzel

Recently, we have shown that inhalation of hydrogen sulfide (H2S) protects against ventilator-induced lung injury (VILI). In the present study, we aimed to determine the underlying molecular mechanisms of H2S-dependent lung protection by analyzing gene expression profiles in mice. C57BL/6 mice were subjected to spontaneous breathing or mechanical ventilation in the absence or presence of H2S (80 parts per million). Gene expression profiles were determined by microarray, sqRT-PCR and Western Blot analyses. The association of Atf3 in protection against VILI was confirmed with a Vivo-Morpholino knockout model. Mechanical ventilation caused a significant lung inflammation and damage that was prevented in the presence of H2S. Mechanical ventilation favoured the expression of genes involved in inflammation, leukocyte activation and chemotaxis. In contrast, ventilation with H2S activated genes involved in extracellular matrix remodelling, angiogenesis, inhibition of apoptosis, and inflammation. Amongst others, H2S administration induced Atf3, an anti-inflammatory and anti-apoptotic regulator. Morpholino mediated reduction of Atf3 resulted in elevated lung injury despite the presence of H2S. In conclusion, lung protection by H2S during mechanical ventilation is associated with down-regulation of genes related to oxidative stress and inflammation and up-regulation of anti-apoptotic and anti-inflammatory genes. Here we show that Atf3 is clearly involved in H2S mediated protection.


PLOS ONE | 2013

Thiopental Inhibits Global Protein Synthesis by Repression of Eukaryotic Elongation Factor 2 and Protects from Hypoxic Neuronal Cell Death

Christian I. Schwer; Cornelius Lehane; Timo Guelzow; Simone Zenker; Karl M. Strosing; Sashko G. Spassov; Anika Erxleben; Bernd Heimrich; Hartmut Buerkle; Matjaz Humar

Ischemic and traumatic brain injury is associated with increased risk for death and disability. The inhibition of penumbral tissue damage has been recognized as a target for therapeutic intervention, because cellular injury evolves progressively upon ATP-depletion and loss of ion homeostasis. In patients, thiopental is used to treat refractory intracranial hypertension by reducing intracranial pressure and cerebral metabolic demands; however, therapeutic benefits of thiopental-treatment are controversially discussed. In the present study we identified fundamental neuroprotective molecular mechanisms mediated by thiopental. Here we show that thiopental inhibits global protein synthesis, which preserves the intracellular energy metabolite content in oxygen-deprived human neuronal SK-N-SH cells or primary mouse cortical neurons and thus ameliorates hypoxic cell damage. Sensitivity to hypoxic damage was restored by pharmacologic repression of eukaryotic elongation factor 2 kinase. Translational inhibition was mediated by calcium influx, activation of the AMP-activated protein kinase, and inhibitory phosphorylation of eukaryotic elongation factor 2. Our results explain the reduction of cerebral metabolic demands during thiopental treatment. Cycloheximide also protected neurons from hypoxic cell death, indicating that translational inhibitors may generally reduce secondary brain injury. In conclusion our study demonstrates that therapeutic inhibition of global protein synthesis protects neurons from hypoxic damage by preserving energy balance in oxygen-deprived cells. Molecular evidence for thiopental-mediated neuroprotection favours a positive clinical evaluation of barbiturate treatment. The chemical structure of thiopental could represent a pharmacologically relevant scaffold for the development of new organ-protective compounds to ameliorate tissue damage when oxygen availability is limited.


PLOS ONE | 2018

Sevoflurane posttreatment prevents oxidative and inflammatory injury in ventilator-induced lung injury.

Julie Wagner; Karl M. Strosing; Sashko G. Spassov; Ziwei Lin; Helen Engelstaedter; Sabine Tacke; Alexander Hoetzel; Simone Faller

Mechanical ventilation is a life-saving clinical treatment but it can induce or aggravate lung injury. New therapeutic strategies, aimed at reducing the negative effects of mechanical ventilation such as excessive production of reactive oxygen species, release of pro-inflammatory cytokines, and transmigration as well as activation of neutrophil cells, are needed to improve the clinical outcome of ventilated patients. Though the inhaled anesthetic sevoflurane is known to exert organ-protective effects, little is known about the potential of sevoflurane therapy in ventilator-induced lung injury. This study focused on the effects of delayed sevoflurane application in mechanically ventilated C57BL/6N mice. Lung function, lung injury, oxidative stress, and inflammatory parameters were analyzed and compared between non-ventilated and ventilated groups with or without sevoflurane anesthesia. Mechanical ventilation led to a substantial induction of lung injury, reactive oxygen species production, pro-inflammatory cytokine release, and neutrophil influx. In contrast, sevoflurane posttreatment time dependently reduced histological signs of lung injury. Most interestingly, increased production of reactive oxygen species was clearly inhibited in all sevoflurane posttreatment groups. Likewise, the release of the pro-inflammatory cytokines interleukin-1β and MIP-1β and neutrophil transmigration were completely prevented by sevoflurane independent of the onset of sevoflurane administration. In conclusion, sevoflurane posttreatment time dependently limits lung injury, and oxidative and pro-inflammatory responses are clearly prevented by sevoflurane irrespective of the onset of posttreatment. These findings underline the therapeutic potential of sevoflurane treatment in ventilator-induced lung injury.


Oxidative Medicine and Cellular Longevity | 2017

Corrigendum to “Hydrogen Sulfide Prevents Formation of Reactive Oxygen Species through PI3K/Akt Signaling and Limits Ventilator-Induced Lung Injury”

Sashko G. Spassov; Rosa Donus; Paul Mikael Ihle; Helen Engelstaedter; Alexander Hoetzel; Simone Faller

[This corrects the article DOI: 10.1155/2017/3715037.].


Critical Care Medicine | 2017

Hydrogen Sulfide Confers Lung Protection During Mechanical Ventilation via Cyclooxygenase 2, 15-deoxy Δ12,14-Prostaglandin J2, and Peroxisome Proliferator-Activated Receptor Gamma

Sashko G. Spassov; Simone Faller; Matthias Hummel; Khaled Helo; Andreas Ihle; Stefan W. Ryter; Karl M. Strosing; Alexander Hoetzel

Collaboration


Dive into the Sashko G. Spassov's collaboration.

Top Co-Authors

Avatar

Alexander Hoetzel

University Medical Center Freiburg

View shared research outputs
Top Co-Authors

Avatar

Simone Faller

University Medical Center Freiburg

View shared research outputs
Top Co-Authors

Avatar

Karl M. Strosing

University Medical Center Freiburg

View shared research outputs
Top Co-Authors

Avatar

Helen Engelstaedter

University Medical Center Freiburg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Matthias Hummel

University Medical Center Freiburg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kornelia K. Zimmermann

University Medical Center Freiburg

View shared research outputs
Top Co-Authors

Avatar

Rene Schmidt

University Medical Center Freiburg

View shared research outputs
Researchain Logo
Decentralizing Knowledge