Sassan HajMohammadi
Dartmouth College
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sassan HajMohammadi.
Journal of Clinical Investigation | 2003
Sassan HajMohammadi; Keiichi Enjyoji; Marc Princivalle; Patricia Christi; Miroslav Lech; David Beeler; Helen Rayburn; John J. Schwartz; Samad Barzegar; Ariane I. de Agostini; Mark J. Post; Robert D. Rosenberg; Nicholas W. Shworak
Endothelial cell production of anticoagulant heparan sulfate (HS(act)) is controlled by the Hs3st1 gene, which encodes the rate-limiting enzyme heparan sulfate 3-O-sulfotransferase-1 (3-OST-1). In vitro, HS(act) dramatically enhances the neutralization of coagulation proteases by antithrombin. The in vivo role of HS(act) was evaluated by generating Hs3st1(-/-) knockout mice. Hs3st1(-/-) animals were devoid of 3-OST-1 enzyme activity in plasma and tissue extracts. Nulls showed dramatic reductions in tissue levels of HS(act) but maintained wild-type levels of tissue fibrin accumulation under both normoxic and hypoxic conditions. Given that vascular HS(act) predominantly occurs in the subendothelial matrix, mice were subjected to a carotid artery injury assay in which ferric chloride administration induces de-endothelialization and occlusive thrombosis. Hs3st1(-/-) and Hs3st1(+/+) mice yielded indistinguishable occlusion times and comparable levels of thrombin.antithrombin complexes. Thus, Hs3st1(-/-) mice did not show an obvious procoagulant phenotype. Instead, Hs3st1(-/-) mice exhibited genetic background-specific lethality and intrauterine growth retardation, without evidence of a gross coagulopathy. Our results demonstrate that the 3-OST-1 enzyme produces the majority of tissue HS(act). Surprisingly, this bulk of HS(act) is not essential for normal hemostasis in mice. Instead, 3-OST-1-deficient mice exhibited unanticipated phenotypes suggesting that HS(act) or additional 3-OST-1-derived structures may serve alternate biologic roles.
Glycoconjugate Journal | 2002
Nicholas W. Shworak; Sassan HajMohammadi; Ariane I. de Agostini; Robert D. Rosenberg
Heparan sulfate that contains antithrombin binding sites is designated as anticoagulant heparan sulfate (HSact) since, in vitro, it dramatically enhances the neutralization of coagulation proteases by antithrombin. Endothelial cell production of HSact is controlled by the Hs3st1 gene, which encodes the rate limiting enzyme—heparan sulfate 3-O-sulfotransferase-1 (Hs3st1). It has long been proposed that levels of endothelial HSact may tightly regulate hemostatic tone. This potential in vivo role of HSact was assessed by generating Hs3st1−/− knockout mice. Hs3st1−/− and Hs3st1+/+ mice were evaluated with a variety of methods, capable of detecting altered hemostatic tone. However, both genotypes were indistinguishable. Instead, Hs3st1−/− mice exhibited lethality on a specific genetic background and also showed intrauterine growth retardation. Neither phenotypes result from a gross coagulopathy. So although this enzyme produces the majority of tissue HSact, Hs3st1−/− mice do not show an obvious procoagulant phenotype. These results suggest that the bulk of HSact is not essential for normal hemostasis and that hemostatic tone is not tightly regulated by total levels of HSact. Moreover, the unanticipated non-thrombotic phenotypes suggest structure(s) derived from this enzyme might serve additional/alternative biologic roles. Published in 2003.
Journal of Biological Chemistry | 2008
Ariane I. de Agostini; Ji-Cui Dong; Corinne de Vantéry Arrighi; Marie-Andrée Ramus; Isabelle Dentand-Quadri; Sébastien Thalmann; Patricia Ventura; Victoria Ibecheole; Felicia Monge; Anne-Marie Fischer; Sassan HajMohammadi; Nicholas W. Shworak; Lijuan Zhang; Zhenqing Zhang; Robert J. Linhardt
Anticoagulant heparan sulfate proteoglycans bind and activate antithrombin by virtue of a specific 3-O-sulfated pentasaccharide. They not only occur in the vascular wall but also in extravascular tissues, such as the ovary, where their functions remain unknown. The rupture of the ovarian follicle at ovulation is one of the most striking examples of tissue remodeling in adult mammals. It involves tightly controlled inflammation, proteolysis, and fibrin deposition. We hypothesized that ovarian heparan sulfates may modulate these processes through interactions with effector proteins. Our previous work has shown that anticoagulant heparan sulfates are synthesized by rodent ovarian granulosa cells, and we now have set out to characterize heparan sulfates from human follicular fluid. Here we report the first anticoagulant heparan sulfate purified from a natural human extravascular source. Heparan sulfate chains were fractionated according to their affinity for antithrombin, and their structure was analyzed by 1H NMR and MS/MS. We find that human follicular fluid is a rich source of anticoagulant heparan sulfate, comprising 50.4% of total heparan sulfate. These antithrombin-binding chains contain more than 6% 3-O-sulfated glucosamine residues, convey an anticoagulant activity of 2.5 IU/ml to human follicular fluid, and have an anti-Factor Xa specific activity of 167 IU/mg. The heparan sulfate chains that do not bind antithrombin surprisingly exhibit an extremely high content in 3-O-sulfated glucosamine residues, which suggest that they may exhibit biological activities through interactions with other proteins.
Journal of Biological Chemistry | 2005
Eric Girardin; Sassan HajMohammadi; Béatrice Birmelé; Armin Helisch; Nicholas W. Shworak; Ariane I. de Agostini
Endothelial and other select cell types synthesize a subpopulation of heparan sulfate (HS) proteoglycans (HSPGs), anticoagulant HSPGs (aHSPGs) that bear aHS-HS chains with the cognate 3-O-sulfated pentasaccharide motif that can bind and activate anti-thrombin (AT). Endothelial cells regulate aHSPG production by limiting levels of HS 3-O-sulfotransferase-1 (3-OST-1), which modifies a non-limiting pool of aHS-precursors. By probing kidney cryosections with 125I-AT and fluorescently tagged AT we found that the glomerular basement membrane contains aHSPGs, with the staining pattern implicating synthesis by glomerular epithelial cells (GECs). Indeed, cultured GECs synthesized aHS with high AT affinity that was comparable with the endothelial product. Disaccharide analyses of human GEC (hGEC) HS in conjunction with transcript analyses revealed that hGECs express predominantly 3-OST-1 and 3-OST-3A. aHS production has not been previously examined in cells expressing multiple 3-OST isoforms. This unusual situation appears to involve novel mechanisms to regulate aHS production, as HS structural analyses suggest hGECs exhibit excess levels of 3-OST-1 and an extremely limiting pool of aHS-precursor. A limiting aHS-precursor pool may serve to minimize aHS synthesis by non-3-OST-1 isoforms. Indeed, we show that high in vitro levels of 3-OST-3A can efficiently generate aHS. Non-3-OST-1 isoforms can generate aHS in vivo, as the probing of kidney sections from 3-OST-1-deficient mice revealed GEC synthesis of aHSPGs. Surprisingly, Hs3st1-/- kidney only expresses 3-OST isoforms having a low specificity for aHS synthesis. Thus, our analyses reveal a cell type that expresses multiple 3-OST isoforms and produces minimal amounts of aHS-precursor. In part, this mechanism should prevent aHS overproduction by non-3-OST-1 isoforms. Such a role may be essential, as 3-OST isoforms that have a low specificity for aHS synthesis can generate substantial levels of aHSPGs in vivo.
Matrix Biology | 2007
Roger Lawrence; Tomio Yabe; Sassan HajMohammadi; John M. Rhodes; Melissa McNeely; Jian Liu; Edward Lamperti; Paul Toselli; Miroslaw Lech; Patricia G. Spear; Robert D. Rosenberg; Nicholas W. Shworak
The FASEB Journal | 2007
Nicholas W. Shworak; Bruno A. Esposito; Sassan HajMohammadi; Peter L. Gross
The FASEB Journal | 2007
Nicholas W. Shworak; Roger Lawrence; Jeffery D Esko; Sassan HajMohammadi
Matrix Biology | 2006
Sassan HajMohammadi; Roger Lawrence; Jeffrey D. Esko; Nicholas W. Shworak
Matrix Biology | 2006
Peter L. Gross; B.A. Esposito; Sassan HajMohammadi; Nicholas W. Shworak
Circulation | 2006
Sassan HajMohammadi; Roger Lawrence; Jeffery D Esko; Nicholas W. Shworak