Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Satoshi Ishii is active.

Publication


Featured researches published by Satoshi Ishii.


Applied and Environmental Microbiology | 2013

Nitrate-dependent ferrous iron oxidation by anaerobic ammonium oxidation (anammox) bacteria.

Mamoru Oshiki; Satoshi Ishii; K. Yoshida; Naoki Fujii; M. Ishiguro; Hisashi Satoh; Satoshi Okabe

ABSTRACT We examined nitrate-dependent Fe2+ oxidation mediated by anaerobic ammonium oxidation (anammox) bacteria. Enrichment cultures of “Candidatus Brocadia sinica” anaerobically oxidized Fe2+ and reduced NO3 − to nitrogen gas at rates of 3.7 ± 0.2 and 1.3 ± 0.1 (mean ± standard deviation [SD]) nmol mg protein−1 min−1, respectively (37°C and pH 7.3). This nitrate reduction rate is an order of magnitude lower than the anammox activity of “Ca. Brocadia sinica” (10 to 75 nmol NH4 + mg protein−1 min−1). A 15N tracer experiment demonstrated that coupling of nitrate-dependent Fe2+ oxidation and the anammox reaction was responsible for producing nitrogen gas from NO3 − by “Ca. Brocadia sinica.” The activities of nitrate-dependent Fe2+ oxidation were dependent on temperature and pH, and the highest activities were seen at temperatures of 30 to 45°C and pHs ranging from 5.9 to 9.8. The mean half-saturation constant for NO3 − ± SD of “Ca. Brocadia sinica” was determined to be 51 ± 21 μM. Nitrate-dependent Fe2+ oxidation was further demonstrated by another anammox bacterium, “Candidatus Scalindua sp.,” whose rates of Fe2+ oxidation and NO3 − reduction were 4.7 ± 0.59 and 1.45 ± 0.05 nmol mg protein−1 min−1, respectively (20°C and pH 7.3). Co-occurrence of nitrate-dependent Fe2+ oxidation and the anammox reaction decreased the molar ratios of consumed NO2 − to consumed NH4 + (ΔNO2 −/ΔNH4 +) and produced NO3 − to consumed NH4 + (ΔNO3 −/ΔNH4 +). These reactions are preferable to the application of anammox processes for wastewater treatment.


The ISME Journal | 2011

Identification and isolation of active N2O reducers in rice paddy soil

Satoshi Ishii; Hiroki Ohno; Masahiro Tsuboi; Shigeto Otsuka; Keishi Senoo

Dissolved N2O is occasionally detected in surface and ground water in rice paddy fields, whereas little or no N2O is emitted to the atmosphere above these fields. This indicates the occurrence of N2O reduction in rice paddy fields; however, identity of the N2O reducers is largely unknown. In this study, we employed both culture-dependent and culture-independent approaches to identify N2O reducers in rice paddy soil. In a soil microcosm, N2O and succinate were added as the electron acceptor and donor, respectively, for N2O reduction. For the stable isotope probing (SIP) experiment, 13C-labeled succinate was used to identify succinate-assimilating microbes under N2O-reducing conditions. DNA was extracted 24 h after incubation, and heavy and light DNA fractions were separated by density gradient ultracentrifugation. Denaturing gradient gel electrophoresis and clone library analysis targeting the 16S rRNA and the N2O reductase gene were performed. For culture-dependent analysis, the microbes that elongated under N2O-reducing conditions in the presence of cell-division inhibitors were individually captured by a micromanipulator and transferred to a low-nutrient medium. The N2O-reducing ability of these strains was examined by gas chromatography/mass spectrometry. Results of the SIP analysis suggested that Burkholderiales and Rhodospirillales bacteria dominated the population under N2O-reducing conditions, in contrast to the control sample (soil incubated with only 13C-succinate). Results of the single-cell isolation technique also indicated that the majority of the N2O-reducing strains belonged to the genera Herbaspirillum (Burkholderiales) and Azospirillum (Rhodospirillales). In addition, Herbaspirillum strains reduced N2O faster than Azospirillum strains. These results suggest that Herbaspirillum spp. may have an important role in N2O reduction in rice paddy soils.


Water Research | 2009

Seasonal stability of Cladophora-associated Salmonella in Lake Michigan watersheds

Muruleedhara N. Byappanahalli; Richard Sawdey; Satoshi Ishii; Dawn A. Shively; John Ferguson; Richard L. Whitman; Michael J. Sadowsky

The bacterial pathogens Shigella, Salmonella, Campylobacter, and shiga toxin-producing E. coli (STEC) were recently found to be associated with Cladophora growing in southern Lake Michigan. Preliminary results indicated that the Salmonella strains associated with Cladophora were genetically identical to each other. However, because of the small sample size (n=37 isolates) and a lack of information on spatial-temporal relationships, the nature of the association between Cladophora and Salmonella remained speculative. In this study, we investigated the population structure and genetic relatedness of a large number of Cladophora-borne Salmonella isolates from Lake Michigan (n=133), as well as those isolated from stream and lake water (n=31), aquatic plants (n=8), and beach sands and sediments (n=8) from adjacent watersheds. Salmonella isolates were collected during 2005-2007 between May and August from Lake Michigan beachsheds in Wisconsin, Illinois, and Indiana. The genetic relatedness of Salmonella isolates was examined by using the horizontal, fluorophore-enhanced rep-PCR (HFERP) DNA fingerprinting technique. While the Salmonella isolates associated with Cladophora exhibited a high degree of genetic relatedness (>or=92% similarity), the isolates were not all genetically identical. Spatial and temporal relationships were evident in the populations examined, with tight clustering of the isolates both by year and location. These findings suggest that the relationship between Salmonella and Cladophora is likely casual and is related to input sources (e.g. wastewater, runoff, birds) and the predominant Salmonella genotype surviving in the environment during a given season. Our studies indicate that Cladophora is likely an important reservoir for Salmonella and other enteric bacterial pathogens in Lake Michigan beachsheds, which in turn may influence nearshore water quality.


Water Research | 2010

Large scale analysis of virulence genes in Escherichia coli strains isolated from Avalon Bay, CA

Matthew J. Hamilton; Asbah Z. Hadi; John F. Griffith; Satoshi Ishii; Michael J. Sadowsky

Contamination of recreational waters with Escherichia coli and Enterococcus sp. is a widespread problem resulting in beach closures and loss of recreational activity. While E. coli is frequently used as an indicator of fecal contamination, and has been extensively measured in waterways, few studies have examined the presence of potentially pathogenic E. coli strains in beach waters. In this study, a combination of high-throughput, robot-assisted colony hybridization and PCR-based analyses were used to determine the genomic composition and frequency of virulence genes present in E. coli isolated from beach water in Avalon Bay, Santa Catalina Island, CA. A total of 24,493 E. coli isolates were collected from two sites at a popular swimming beach between August through September 2007 and from July through August 2008. All isolates were examined for the presence of shiga-like toxins (stx1/stx2), intimin (eaeA), and enterotoxins (ST/LT). Of the 24,493 isolates examined, 3.6% contained the eaeA gene, indicating that these isolates were potential EPEC strains. On five dates, however, greater than 10% of the strains were potential EPEC, suggesting that incidence of virulence genes at this beach has a strong temporal component. No STEC or ETEC isolates were detected, and only eight (<1.0%) of the potential EPEC isolates were found to carry the EAF plasmid. The potential EPEC isolates mainly belonged to E. coli phylogenetic groups B1 or B2, and carried the β intimin subtype. DNA fingerprint analyses of the potential EPEC strains indicated that the isolates belonged to several genetically diverse groups, although clonal isolates were frequently detected. While the presence of virulence genes alone cannot be used to determine the pathogenicity of strains, results from this study show that potential EPEC strains can be found in marine beach water and their presence needs to be considered as one of the factors used in decisions concerning beach closures.


Applied and Environmental Microbiology | 2013

Simultaneous Quantification of Multiple Food and Waterborne Pathogens by Use of Microfluidic Quantitative PCR

Satoshi Ishii; Takahiro Segawa; Satoshi Okabe

ABSTRACT The direct quantification of multiple pathogens has been desired for diagnostic and public health purposes for a long time. In this study, we applied microfluidic quantitative PCR (qPCR) technology to the simultaneous detection and quantification of multiple food- and waterborne pathogens. In this system, multiple singleplex qPCR assays were run under identical detection conditions in nanoliter-volume chambers that are present in high densities on a chip. First, we developed 18 TaqMan qPCR assays that could be run in the same PCR conditions by using prevalidated TaqMan probes. Specific and sensitive quantification was achieved by using these qPCR assays. With the addition of two previously validated TaqMan qPCR assays, we used 20 qPCR assays targeting 10 enteric pathogens, a fecal indicator bacterium (general Escherichia coli), and a process control strain in the microfluidic qPCR system. We preamplified the template DNA to increase the sensitivity of the qPCR assays. Our results suggested that preamplification was effective for quantifying small amounts of the template DNA without any major impact on the sensitivity, efficiency, and quantitative performance of qPCR. This microfluidic qPCR system allowed us to detect and quantify multiple pathogens from fecal samples and environmental water samples spiked with pathogens at levels as low as 100 cells/liter. These results suggest that the routine monitoring of multiple pathogens in food and water samples is now technically feasible. This method may provide more reliable information for risk assessment than the current fecal contamination indicator approach.


Water Research | 2013

Source identification of nitrous oxide on autotrophic partial nitrification in a granular sludge reactor

Rathnayake M.L.D. Rathnayake; Yanjun Song; Azzaya Tumendelger; Mamoru Oshiki; Satoshi Ishii; Hisashi Satoh; Sakae Toyoda; Naohiro Yoshida; Satoshi Okabe

Emission of nitrous oxide (N2O) during biological wastewater treatment is of growing concern since N2O is a major stratospheric ozone-depleting substance and an important greenhouse gas. The emission of N2O from a lab-scale granular sequencing batch reactor (SBR) for partial nitrification (PN) treating synthetic wastewater without organic carbon was therefore determined in this study, because PN process is known to produce more N2O than conventional nitrification processes. The average N2O emission rate from the SBR was 0.32 ± 0.17 mg-N L(-1) h(-1), corresponding to the average emission of N2O of 0.8 ± 0.4% of the incoming nitrogen load (1.5 ± 0.8% of the converted NH4(+)). Analysis of dynamic concentration profiles during one cycle of the SBR operation demonstrated that N2O concentration in off-gas was the highest just after starting aeration whereas N2O concentration in effluent was gradually increased in the initial 40 min of the aeration period and was decreased thereafter. Isotopomer analysis was conducted to identify the main N2O production pathway in the reactor during one cycle. The hydroxylamine (NH2OH) oxidation pathway accounted for 65% of the total N2O production in the initial phase during one cycle, whereas contribution of the NO2(-) reduction pathway to N2O production was comparable with that of the NH2OH oxidation pathway in the latter phase. In addition, spatial distributions of bacteria and their activities in single microbial granules taken from the reactor were determined with microsensors and by in situ hybridization. Partial nitrification occurred mainly in the oxic surface layer of the granules and ammonia-oxidizing bacteria were abundant in this layer. N2O production was also found mainly in the oxic surface layer. Based on these results, although N2O was produced mainly via NH2OH oxidation pathway in the autotrophic partial nitrification reactor, N2O production mechanisms were complex and could involve multiple N2O production pathways.


Microbes and Environments | 2012

Identification of Active Denitrifiers in Rice Paddy Soil by DNA- and RNA-Based Analyses

Megumi Yoshida; Satoshi Ishii; Daichi Fujii; Shigeto Otsuka; Keishi Senoo

Denitrification occurs markedly in rice paddy fields; however, few microbes that are actively involved in denitrification in these environments have been identified. In this study, we used a laboratory soil microcosm system in which denitrification activity was enhanced. DNA and RNA were extracted from soil at six time points after enhancing denitrification activity, and quantitative PCR and clone library analyses were performed targeting the 16S rRNA gene and denitrification functional genes (nirS, nirK and nosZ) to clarify which microbes are actively involved in denitrification in rice paddy soil. Based on the quantitative PCR results, transcription levels of the functional genes agreed with the denitrification activity, although gene abundance did not change at the DNA level. Diverse denitrifiers were detected in clone library analysis, but comparative analysis suggested that only some of the putative denitrifiers, especially those belonging to the orders Neisseriales, Rhodocyclales and Burkholderiales, were actively involved in denitrification in rice paddy soil.


Bioresource Technology | 2015

Effects of dissolved oxygen and pH on nitrous oxide production rates in autotrophic partial nitrification granules.

Rathnayake M.L.D. Rathnayake; Mamoru Oshiki; Satoshi Ishii; Takahiro Segawa; Hisashi Satoh; Satoshi Okabe

The effects of dissolved oxygen (DO) and pH on nitrous oxide (N2O) production rates and pathways in autotrophic partial nitrification (PN) granules were investigated at the granular level. N2O was primarily produced by betaproteobacterial ammonia-oxidizing bacteria, mainly Nitrosomonas europaea, in the oxic surface layer (<200μm) of the autotrophic PN granules. N2O production increased with increasing bulk DO concentration owing to activation of the ammonia (i.e., hydroxylamine) oxidation in this layer. The highest N2O emissions were observed at pH 7.5, although the ammonia oxidation rate was unchanged between pH 6.5 and 8.5. Overall, the results of this study suggest that in situ analyses of PN granules are essential to gaining insight into N2O emission mechanisms in a granule.


Applied and Environmental Microbiology | 2014

Microfluidic Quantitative PCR for Simultaneous Quantification of Multiple Viruses in Environmental Water Samples

Satoshi Ishii; Gaku Kitamura; Takahiro Segawa; Ayano Kobayashi; Takayuki Miura; Daisuke Sano; Satoshi Okabe

ABSTRACT To secure food and water safety, quantitative information on multiple pathogens is important. In this study, we developed a microfluidic quantitative PCR (MFQPCR) system to simultaneously quantify 11 major human viral pathogens, including adenovirus, Aichi virus, astrovirus, enterovirus, human norovirus, rotavirus, sapovirus, and hepatitis A and E viruses. Murine norovirus and mengovirus were also quantified in our MFQPCR system as a sample processing control and an internal amplification control, respectively. River water contaminated with effluents from a wastewater treatment plant in Sapporo, Japan, was collected and used to validate our MFQPCR system for multiple viruses. High-throughput quantitative information was obtained with a quantification limit of 2 copies/μl of cDNA/DNA. Using this MFQPCR system, we could simultaneously quantify multiple viral pathogens in environmental water samples. The viral quantities obtained using MFQPCR were similar to those determined by conventional quantitative PCR. Thus, the MFQPCR system developed in this study can provide direct and quantitative information for viral pathogens, which is essential for risk assessments.


Science of The Total Environment | 2012

The population structure of Escherichia coli isolated from subtropical and temperate soils

Muruleedhara N. Byappanahalli; Tao Yan; Matthew J. Hamilton; Satoshi Ishii; Roger S. Fujioka; Richard L. Whitman; Michael J. Sadowsky

While genotypically-distinct naturalized Escherichia coli strains have been shown to occur in riparian soils of Lake Michigan and Lake Superior watersheds, comparative analyses of E. coli populations in diverse soils across a range of geographic and climatic conditions have not been investigated. The main objectives of this study were to: (a) examine the population structure and genetic relatedness of E. coli isolates collected from different soil types on a tropical island (Hawaii), and (b) determine if E. coli populations from Hawaii and temperate soils (Indiana, Minnesota) shared similar genotypes that may be reflective of biome-related soil conditions. DNA fingerprint and multivariate statistical analyses were used to examine the population structure and genotypic characteristics of the E. coli isolates. About 33% (98 of 293) of the E. coli from different soil types and locations on the island of Oahu, Hawaii, had unique DNA fingerprints, indicating that these bacteria were relatively diverse; the Shannon diversity index for the population was 4.03. Nearly 60% (171 of 293) of the E. coli isolates from Hawaii clustered into two major groups and the rest, with two or more isolates, fell into one of 22 smaller groups, or individual lineages. Multivariate analysis of variance of 89, 21, and 106 unique E. coli DNA fingerprints for Hawaii, Indiana, and Minnesota soils, respectively, showed that isolates formed tight cohesive groups, clustering mainly by location. However, there were several instances of clonal isolates being shared between geographically different locations. Thus, while nearly identical E. coli strains were shared between disparate climatologically- and geographically-distinct locations, a vast majority of the soil E. coli strains were genotypically diverse and were likely derived from separate lineages. This supports the hypothesis that these bacteria are not unique and multiple genotypes can readily adapt to become part of the soil autochthonous microflora.

Collaboration


Dive into the Satoshi Ishii's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Qian Zhang

University of Hawaii at Manoa

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge