Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Satoshi Kidokoro is active.

Publication


Featured researches published by Satoshi Kidokoro.


Plant Journal | 2010

AREB1, AREB2, and ABF3 are master transcription factors that cooperatively regulate ABRE-dependent ABA signaling involved in drought stress tolerance and require ABA for full activation.

Takuya Yoshida; Yasunari Fujita; Satoshi Kidokoro; Kyonoshin Maruyama; Junya Mizoi; Kazuo Shinozaki; Kazuko Yamaguchi-Shinozaki

A myriad of drought stress-inducible genes have been reported, and many of these are activated by abscisic acid (ABA). In the promoter regions of such ABA-regulated genes, conserved cis-elements, designated ABA-responsive elements (ABREs), control gene expression via bZIP-type AREB/ABF transcription factors. Although all three members of the AREB/ABF subfamily, AREB1, AREB2, and ABF3, are upregulated by ABA and water stress, it remains unclear whether these are functional homologs. Here, we report that all three AREB/ABF transcription factors require ABA for full activation, can form hetero- or homodimers to function in nuclei, and can interact with SRK2D/SnRK2.2, an SnRK2 protein kinase that was identified as a regulator of AREB1. Along with the tissue-specific expression patterns of these genes and the subcellular localization of their encoded proteins, these findings clearly indicate that AREB1, AREB2, and ABF3 have largely overlapping functions. To elucidate the role of these AREB/ABF transcription factors, we generated an areb1 areb2 abf3 triple mutant. Large-scale transcriptome analysis, which showed that stress-responsive gene expression is remarkably impaired in the triple mutant, revealed novel AREB/ABF downstream genes in response to water stress, including many LEA class and group-Ab PP2C genes and transcription factors. The areb1 areb2 abf3 triple mutant is more resistant to ABA than are the other single and double mutants with respect to primary root growth, and it displays reduced drought tolerance. Thus, these results indicate that AREB1, AREB2, and ABF3 are master transcription factors that cooperatively regulate ABRE-dependent gene expression for ABA signaling under conditions of water stress.


Plant and Cell Physiology | 2009

Three Arabidopsis SnRK2 Protein Kinases, SRK2D/SnRK2.2, SRK2E/SnRK2.6/OST1 and SRK2I/SnRK2.3, Involved in ABA Signaling are Essential for the Control of Seed Development and Dormancy

Kazuo Nakashima; Yasunari Fujita; Norihito Kanamori; Takeshi Katagiri; Taishi Umezawa; Satoshi Kidokoro; Kyonoshin Maruyama; Takuya Yoshida; Kanako Ishiyama; Masatomo Kobayashi; Kazuo Shinozaki; Kazuko Yamaguchi-Shinozaki

ABA is an important phytohormone regulating various plant processes, including stress tolerance, seed development and germination. SRK2D/SnRK2.2, SRK2E/SnRK2.6/OST1 and SRK2I/SnRK2.3 are redundant ABA-activated SNF1-related protein kinases 2 (SnRK2s) in Arabidopsis thaliana. We examined the role of these protein kinases in seed development and germination. These SnRK2 proteins were mainly expressed in the nucleus during seed development and germination. The triple mutant (srk2d srk2e srk2i) was sensitive to desiccation and showed severe growth defects during seed development. It exhibited a loss of dormancy and elevated seed ABA content relative to wild-type plants. The severity of these phenotypes was far stronger than that of any single or double SRK2D, SRK2E and SRK2I mutants, including the srk2d srk2i mutant. The triple mutant had greatly reduced phosphorylation activity in in-gel kinase experiments using basic leucine zipper (bZIP) transcription factors including ABI5. Microarray experiments revealed that 48 and 30% of the down-regulated genes in abi5 and abi3 seeds were suppressed in the triple mutant seeds, respectively. Moreover, disruption of the three protein kinases induced global changes in the up-regulation of ABA-repressive gene expression, as well as the down-regulation of ABA-inducible gene expression. These alterations in gene expression result in a loss of dormancy and severe growth defects during seed development. Collectively, these results indicate that SRK2D, SRK2E and SRK2I protein kinases involved in ABA signaling are essential for the control of seed development and dormancy through the extensive control of gene expression.


Plant and Cell Physiology | 2009

Three SnRK2 Protein Kinases are the Main Positive Regulators of Abscisic Acid Signaling in Response to Water Stress in Arabidopsis

Yasunari Fujita; Kazuo Nakashima; Takuya Yoshida; Takeshi Katagiri; Satoshi Kidokoro; Norihito Kanamori; Taishi Umezawa; Miki Fujita; Kyonoshin Maruyama; Kanako Ishiyama; Masatomo Kobayashi; Shoko Nakasone; Kohji Yamada; Takuya Ito; Kazuo Shinozaki; Kazuko Yamaguchi-Shinozaki

Responses to water stress are thought to be mediated by transcriptional regulation of gene expression via reversible protein phosphorylation events. Previously, we reported that bZIP (basic-domain leucine zipper)-type AREB/ABF (ABA-responsive element-binding protein/factor) transcription factors are involved in ABA signaling under water stress conditions in Arabidopsis. The AREB1 protein is phosphorylated in vitro by ABA-activated SNF1-related protein kinase 2s (SnRK2s) such as SRK2D/SnRK2.2, SRK2E/SnRK2.6 and SRK2I/SnRK2.3 (SRK2D/E/I). Consistent with this, we now show that SRK2D/E/I and AREB1 co-localize and interact in nuclei in planta. Our results show that unlike srk2d, srk2e and srk2i single and double mutants, srk2d srk2e srk2i (srk2d/e/i) triple mutants exhibit greatly reduced tolerance to drought stress and highly enhanced insensitivity to ABA. Under water stress conditions, ABA- and water stress-dependent gene expression, including that of transcription factors, is globally and drastically impaired, and jasmonic acid (JA)-responsive and flowering genes are up-regulated in srk2d/e/i triple mutants, but not in other single and double mutants. The down-regulated genes in srk2d/e/i and areb/abf triple mutants largely overlap in ABA-dependent expression, supporting the view that SRK2D/E/I regulate AREB/ABFs in ABA signaling in response to water stress. Almost all dehydration-responsive LEA (late embryogenesis abundant) protein genes and group-A PP2C (protein phosphatase 2C) genes are strongly down-regulated in the srk2d/e/i triple mutants. Further, our data show that these group-A PP2Cs, such as HAI1 and ABI1, interact with SRK2D. Together, our results indicate that SRK2D/E/I function as main positive regulators, and suggest that ABA signaling is controlled by the dual modulation of SRK2D/E/I and group-A PP2Cs.


The Plant Cell | 2008

Arabidopsis DREB2A-Interacting Proteins Function as RING E3 Ligases and Negatively Regulate Plant Drought Stress–Responsive Gene Expression

Feng Qin; Yoh Sakuma; Lam-Son Phan Tran; Kyonoshin Maruyama; Satoshi Kidokoro; Yasunari Fujita; Miki Fujita; Taishi Umezawa; Yoriko Sawano; Ken-ichi Miyazono; Masaru Tanokura; Kazuo Shinozaki; Kazuko Yamaguchi-Shinozaki

The DEHYDRATION-RESPONSIVE ELEMENT BINDING PROTEIN2A (DREB2A) transcription factor controls water deficit–inducible gene expression and requires posttranslational modification for its activation. The activation mechanism is not well understood; however, the stability of this protein in the nucleus was recently found to be important for its activation. Here, we report the isolation of Arabidopsis thaliana DREB2A-INTERACTING PROTEIN1 (DRIP1) and DRIP2, C3HC4 RING domain–containing proteins that interact with the DREB2A protein in the nucleus. An in vitro ubiquitination assay showed that they function as E3 ubiquitin ligases and are capable of mediating DREB2A ubiquitination. Overexpression of DRIP1 in Arabidopsis delayed the expression of DREB2A-regulated drought-responsive genes. Drought-inducible gene expression was slightly enhanced in the single T-DNA mutants of drip1-1 and drip2-1. By contrast, significantly enhanced gene expression was revealed in the drip1 drip2 double mutant under dehydration stress. Collectively, these data imply that DRIP1 and DRIP2 function negatively in the response of plants to drought stress. Moreover, overexpression of full-length DREB2A protein was more stable in drip1-1 than in the wild-type background. These results suggest that DRIP1 and DRIP2 act as novel negative regulators in drought-responsive gene expression by targeting DREB2A to 26S proteasome proteolysis.


Molecular Genetics and Genomics | 2010

The abiotic stress-responsive NAC-type transcription factor OsNAC5 regulates stress-inducible genes and stress tolerance in rice

Hironori Takasaki; Kyonoshin Maruyama; Satoshi Kidokoro; Yusuke Ito; Yasunari Fujita; Kazuo Shinozaki; Kazuko Yamaguchi-Shinozaki; Kazuo Nakashima

The transcription factor OsNAC5 in rice is a member of the plant-specific NAC family that regulates stress responses. Expression of OsNAC5 is induced by abiotic stresses such as drought, cold, high salinity, abscisic acid and methyl jasmonic acid. Transactivation assays using rice protoplasts demonstrated that OsNAC5 is a transcriptional activator, and subcellular localization studies using OsNAC5-GFP fusion proteins showed that it is localized to the nucleus. Pull-down assays revealed that OsNAC5 interacts with OsNAC5, OsNAC6 and SNAC1. To analyze the function of OsNAC5 in rice plants, we generated transgenic plants that overexpressed OsNAC5. The growth of these plants was similar to that of control plants, whereas the growth of OsNAC6-overexpressing transgenic plants was retarded. OsNAC5-overexpressing transgenic plants also had improved tolerance to high salinity compared to control plants. By microarray analysis, many stress-inducible genes, including the “late embryogenesis abundant” gene OsLEA3, were upregulated in rice plants that overexpressed OsNAC5. By gel mobility shift assay, OsNAC5 and OsNAC6 were shown to bind to the OsLEA3 promoter. Collectively, our results indicate that the stress-responsive proteins OsNAC5 and OsNAC6 are transcriptional activators that enhance stress tolerance by upregulating the expression of stress-inducible rice genes such as OsLEA3, although the effects of these proteins on growth are different. Furthermore, because OsNAC5 overexpression did not retard growth, OsNAC5 may be a useful gene that can improve the stress tolerance of rice without affecting its growth.


Plant Physiology | 2009

Metabolic Pathways Involved in Cold Acclimation Identified by Integrated Analysis of Metabolites and Transcripts Regulated by DREB1A and DREB2A

Kyonoshin Maruyama; Migiwa Takeda; Satoshi Kidokoro; Kohji Yamada; Yoh Sakuma; Kaoru Urano; Miki Fujita; Kyouko Yoshiwara; Satoko Matsukura; Yoshihiko Morishita; Ryosuke Sasaki; Hideyuki Suzuki; Kazuki Saito; Daisuke Shibata; Kazuo Shinozaki; Kazuko Yamaguchi-Shinozaki

DREB1A/CBF3 and DREB2A are transcription factors that specifically interact with a cis-acting dehydration-responsive element (DRE), which is involved in cold- and dehydration-responsive gene expression in Arabidopsis (Arabidopsis thaliana). Overexpression of DREB1A improves stress tolerance to both freezing and dehydration in transgenic plants. In contrast, overexpression of an active form of DREB2A results in significant stress tolerance to dehydration but only slight tolerance to freezing in transgenic plants. The downstream gene products for DREB1A and DREB2A are reported to have similar putative functions, but downstream genes encoding enzymes for carbohydrate metabolism are very different between DREB1A and DREB2A. We demonstrate that under cold and dehydration conditions, the expression of many genes encoding starch-degrading enzymes, sucrose metabolism enzymes, and sugar alcohol synthases changes dynamically; consequently, many kinds of monosaccharides, disaccharides, trisaccharides, and sugar alcohols accumulate in Arabidopsis. We also show that DREB1A overexpression can cause almost the same changes in these metabolic processes and that these changes seem to improve freezing and dehydration stress tolerance in transgenic plants. In contrast, DREB2A overexpression did not increase the level of any of these metabolites in transgenic plants. Strong freezing stress tolerance of the transgenic plants overexpressing DREB1A may depend on accumulation of these metabolites.


DNA Research | 2012

Identification of cis-acting promoter elements in cold- and dehydration-induced transcriptional pathways in Arabidopsis, rice, and soybean.

Kyonoshin Maruyama; Daisuke Todaka; Junya Mizoi; Takuya Yoshida; Satoshi Kidokoro; Satoko Matsukura; Hironori Takasaki; Tetsuya Sakurai; Yoshiharu Yamamoto; Kyouko Yoshiwara; Mikiko Kojima; Hitoshi Sakakibara; Kazuo Shinozaki; Kazuko Yamaguchi-Shinozaki

The genomes of three plants, Arabidopsis (Arabidopsis thaliana), rice (Oryza sativa), and soybean (Glycine max), have been sequenced, and their many genes and promoters have been predicted. In Arabidopsis, cis-acting promoter elements involved in cold- and dehydration-responsive gene expression have been extensively analysed; however, the characteristics of such cis-acting promoter sequences in cold- and dehydration-inducible genes of rice and soybean remain to be clarified. In this study, we performed microarray analyses using the three species, and compared characteristics of identified cold- and dehydration-inducible genes. Transcription profiles of the cold- and dehydration-responsive genes were similar among these three species, showing representative upregulated (dehydrin/LEA) and downregulated (photosynthesis-related) genes. All (46 = 4096) hexamer sequences in the promoters of the three species were investigated, revealing the frequency of conserved sequences in cold- and dehydration-inducible promoters. A core sequence of the abscisic acid-responsive element (ABRE) was the most conserved in dehydration-inducible promoters of all three species, suggesting that transcriptional regulation for dehydration-inducible genes is similar among these three species, with the ABRE-dependent transcriptional pathway. In contrast, for cold-inducible promoters, the conserved hexamer sequences were diversified among these three species, suggesting the existence of diverse transcriptional regulatory pathways for cold-inducible genes among the species.


Plant Physiology | 2009

The Phytochrome-Interacting Factor PIF7 Negatively Regulates DREB1 Expression under Circadian Control in Arabidopsis

Satoshi Kidokoro; Kyonoshin Maruyama; Kazuo Nakashima; Yoshiyuki Imura; Yoshihiro Narusaka; Zabta Khan Shinwari; Yuriko Osakabe; Yasunari Fujita; Junya Mizoi; Kazuo Shinozaki; Kazuko Yamaguchi-Shinozaki

Transcription factors of the DRE-Binding1 (DREB1)/C-repeat binding factor family specifically interact with a cis-acting dehydration-responsive element/C-repeat involved in low-temperature stress-responsive gene expression in Arabidopsis (Arabidopsis thaliana). Expression of DREB1s is induced by low temperatures and is regulated by the circadian clock under unstressed conditions. Promoter sequences of DREB1s contain six conserved motifs, boxes I to VI. We analyzed the promoter region of DREB1C using transgenic plants and found that box V with the G-box sequence negatively regulates DREB1C expression under circadian control. The region around box VI contains positive regulatory elements for low-temperature-induced expression of DREB1C. Using yeast one-hybrid screens, we isolated cDNA encoding the transcriptional factor Phytochrome-Interacting Factor7 (PIF7), which specifically binds to the G-box of the DREB1C promoter. The PIF7 gene was expressed in rosette leaves, and the PIF7 protein was localized in the nuclei of the cells. Transactivation experiments using Arabidopsis protoplasts indicated that PIF7 functions as a transcriptional repressor for DREB1C expression and that its activity is regulated by PIF7-interacting factors TIMING OF CAB EXPRESSION1 and Phytochrome B, which are components of the circadian oscillator and the red light photoreceptor, respectively. Moreover, in the pif7 mutant, expression of DREB1B and DREB1C was not repressed under light conditions, indicating that PIF7 functions as a transcriptional repressor for the expression of DREB1B and DREB1C under circadian control. This negative regulation of DREB1 expression may be important for avoiding plant growth retardation by the accumulation of DREB1 proteins under unstressed conditions.


Molecular Genetics and Genomics | 2011

Arabidopsis HsfA1 transcription factors function as the main positive regulators in heat shock-responsive gene expression

Takumi Yoshida; Naohiko Ohama; Jun Nakajima; Satoshi Kidokoro; Junya Mizoi; Kazuo Nakashima; Kyonoshin Maruyama; Jong-Myong Kim; Motoaki Seki; Daisuke Todaka; Yuriko Osakabe; Yoh Sakuma; Friedrich Schöffl; Kazuo Shinozaki; Kazuko Yamaguchi-Shinozaki

Arabidopsis DREB2A is a key transcription factor of heat- and drought-responsive gene expression, and DREB2A expression is induced by these stresses. We analyzed the DREB2A promoter and found a heat shock element that functions as a cis-acting element in the heat shock (HS)-responsive expression of DREB2A. Among the 21 Arabidopsis heat shock factors, we chose 4 HsfA1-type proteins as candidate transcriptional activators (HsfA1a, HsfA1b, HsfA1d, and HsfA1e) based on transactivation activity and expression patterns. We generated multiple mutants and found that the HS-responsive expression of DREB2A disappeared in hsfa1a/b/d triple and hsfa1a/b/d/e quadruple mutants. Moreover, HS-responsive gene expression, including that of molecular chaperones and transcription factors, was globally and drastically impaired in the hsfa1a/b/d triple mutant, which exhibited greatly reduced tolerance to HS stress. HsfA1 protein accumulation in the nucleus was negatively regulated by their interactions with HSP90, and other factors potentially strongly activate the HsfA1 proteins under HS stress. The hsfa1a/b/d/e quadruple mutant showed severe growth retardation, and many genes were downregulated in this mutant even under non-stress conditions. Our study indicates that HsfA1a, HsfA1b, and HsfA1d function as main positive regulators in HS-responsive gene expression and four HsfA1-type proteins are important in gene expression for normal plant growth.


Biochemical and Biophysical Research Communications | 2008

Functional analysis of an Arabidopsis heat-shock transcription factor HsfA3 in the transcriptional cascade downstream of the DREB2A stress-regulatory system

Takumi Yoshida; Yoh Sakuma; Daisuke Todaka; Kyonoshin Maruyama; Feng Qin; Junya Mizoi; Satoshi Kidokoro; Yasunari Fujita; Kazuo Shinozaki; Kazuko Yamaguchi-Shinozaki

A transcription factor DREB2A functions as a key regulator not only in drought stress responses but also in heat stress (HS) responses, and activates expression of many abiotic stress-responsive-genes involved in drought and HS tolerance. HsfA3 is one of the most up-regulated heat-inducible genes in transgenic plants overexpressing DREB2A. In this study, the analyses of HsfA3 expression profile and the transactivation analysis of HsfA3 showed that the expression of HsfA3 was directly regulated by DREB2A under HS. Microarray analysis using transgenic plants overexpressing HsfA3 also showed that overexpression of HsfA3 induces many heat-inducible genes. Furthermore, we showed that thermotolerance of the HsfA3 overexpressors was increased, and that of the hsfA3 T-DNA tagged mutants was decreased. These results indicate that HsfA3 regulates expression of many heat-inducible genes in the transcriptional cascade downstream of the DREB2A stress-regulatory system and functions in acquisition of thermotolerance under the control of the DREB2A cascade.

Collaboration


Dive into the Satoshi Kidokoro's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fuminori Takahashi

Tokyo Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge