Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yuriko Osakabe is active.

Publication


Featured researches published by Yuriko Osakabe.


The Plant Cell | 2006

Functional Analysis of an Arabidopsis Transcription Factor, DREB2A, Involved in Drought-Responsive Gene Expression

Yoh Sakuma; Kyonoshin Maruyama; Yuriko Osakabe; Feng Qin; Motoaki Seki; Kazuo Shinozaki; Kazuko Yamaguchi-Shinozaki

Transcription factors DREB1A/CBF3 and DREB2A specifically interact with cis-acting dehydration-responsive element/C-repeat (DRE/CRT) involved in cold and drought stress–responsive gene expression in Arabidopsis thaliana. Intact DREB2A expression does not activate downstream genes under normal growth conditions, suggesting that DREB2A requires posttranslational modification for activation, but the activation mechanism has not been clarified. DREB2A domain analysis using Arabidopsis protoplasts identified a transcriptional activation domain between residues 254 and 335, and deletion of a region between residues 136 and 165 transforms DREB2A to a constitutive active form. Overexpression of constitutive active DREB2A resulted in significant drought stress tolerance but only slight freezing tolerance in transgenic Arabidopsis plants. Microarray and RNA gel blot analyses revealed that DREB2A regulates expression of many water stress–inducible genes. However, some genes downstream of DREB2A are not downstream of DREB1A, which also recognizes DRE/CRT but functions in cold stress–responsive gene expression. Synthetic green fluorescent protein gave a strong signal in the nucleus under unstressed control conditions when fused to constitutive active DREB2A but only a weak signal when fused to full-length DREB2A. The region between DREB2A residues 136 and 165 plays a role in the stability of this protein in the nucleus, which is important for protein activation.


The Plant Cell | 2005

Leucine-Rich Repeat Receptor-Like Kinase1 Is a Key Membrane-Bound Regulator of Abscisic Acid Early Signaling in Arabidopsis

Yuriko Osakabe; Kyonoshin Maruyama; Motoaki Seki; Masakazu Satou; Kazuo Shinozaki; Kazuko Yamaguchi-Shinozaki

Abscisic acid (ABA) is important in seed maturation, seed dormancy, stomatal closure, and stress response. Many genes that function in ABA signal transduction pathways have been identified. However, most important signaling molecules involved in the perception of the ABA signal or with ABA receptors have not been identified yet. Receptor-like kinase1 (RPK1), a Leu-rich repeat (LRR) receptor kinase in the plasma membrane, is upregulated by ABA in Arabidopsis thaliana. Here, we show the phenotypes of T-DNA insertion mutants and RPK1-antisense plants. Repression of RPK1 expression in Arabidopsis decreased sensitivity to ABA during germination, growth, and stomatal closure; microarray and RNA gel analysis showed that many ABA-inducible genes are downregulated in these plants. Furthermore, overexpression of the RPK1 LRR domain alone or fused with the Brassinosteroid-insensitive1 kinase domain in plants resulted in phenotypes indicating ABA sensitivity. RPK1 is involved in the main ABA signaling pathway and in early ABA perception in Arabidopsis.


Development | 2010

RPK2 is an essential receptor-like kinase that transmits the CLV3 signal in Arabidopsis.

Atsuko Kinoshita; Shigeyuki Betsuyaku; Yuriko Osakabe; Shinji Mizuno; Shingo Nagawa; Yvonne Stahl; Rüdiger Simon; Kazuko Yamaguchi-Shinozaki; Hiroo Fukuda; Shinichiro Sawa

The shoot apical meristem (SAM) is the fundamental structure that is located at the growing tip and gives rise to all aerial parts of plant tissues and organs, such as leaves, stems and flowers. In Arabidopsis thaliana, the CLAVATA3 (CLV3) pathway regulates the stem cell pool in the SAM, in which a small peptide ligand derived from CLV3 is perceived by two major receptor complexes, CLV1 and CLV2-CORYNE (CRN)/SUPPRESSOR OF LLP1 2 (SOL2), to restrict WUSCHEL (WUS) expression. In this study, we used the functional, synthetic CLV3 peptide (MCLV3) to isolate CLV3-insensitive mutants and revealed that a receptor-like kinase, RECEPTOR-LIKE PROTEIN KINASE 2 (RPK2), also known as TOADSTOOL 2 (TOAD2), is another key regulator of meristem maintenance. Mutations in the RPK2 gene result in stem cell expansion and increased number of floral organs, as seen in the other clv mutants. These phenotypes are additive with both clv1 and clv2 mutations. Moreover, our biochemical analyses using Nicotiana benthamiana revealed that RPK2 forms homo-oligomers but does not associate with CLV1 or CLV2. These genetic and biochemical findings suggest that three major receptor complexes, RPK2 homomers, CLV1 homomers and CLV2-CRN/SOL2 heteromers, are likely to mediate three signalling pathways, mainly in parallel but with potential crosstalk, to regulate the SAM homeostasis.


Journal of Biological Chemistry | 2010

Overproduction of the Membrane-bound Receptor-like Protein Kinase 1, RPK1, Enhances Abiotic Stress Tolerance in Arabidopsis

Yuriko Osakabe; Shinji Mizuno; Hidenori Tanaka; Kyonoshin Maruyama; Keishi Osakabe; Daisuke Todaka; Yasunari Fujita; Masatomo Kobayashi; Kazuo Shinozaki; Kazuko Yamaguchi-Shinozaki

RPK1 (receptor-like protein kinase 1) localizes to the plasma membrane and functions as a regulator of abscisic acid (ABA) signaling in Arabidopsis. In our current study, we investigated the effect of RPK1 disruption and overproduction upon plant responses to drought stress. Transgenic Arabidopsis overexpressing the RPK1 protein showed increased ABA sensitivity in their root growth and stomatal closure and also displayed less transpirational water loss. In contrast, a mutant lacking RPK1 function, rpk1-1, was found to be resistant to ABA during these processes and showed increased water loss. RPK1 overproduction in these transgenic plants thus increased their tolerance to drought stress. We performed microarray analysis of RPK1 transgenic plants and observed enhanced expression of several stress-responsive genes, such as Cor15a, Cor15b, and rd29A, in addition to H2O2-responsive genes. Consistently, the expression levels of ABA/stress-responsive genes in rpk1-1 had decreased compared with wild type. The results suggest that the overproduction of RPK1 enhances both the ABA and drought stress signaling pathways. Furthermore, the leaves of the rpk1-1 plants exhibit higher sensitivity to oxidative stress upon ABA-pretreatment, whereas transgenic plants overproducing RPK1 manifest increased tolerance to this stress. Our current data suggest therefore that RPK1 overproduction controls reactive oxygen species homeostasis and enhances both water and oxidative stress tolerance in Arabidopsis.


Proceedings of the National Academy of Sciences of the United States of America | 2006

Dual function of an Arabidopsis transcription factor DREB2A in water-stress-responsive and heat-stress-responsive gene expression

Yoh Sakuma; Kyonoshin Maruyama; Feng Qin; Yuriko Osakabe; Kazuo Shinozaki; Kazuko Yamaguchi-Shinozaki

Transcription factor DREB2A interacts with a cis-acting dehydration-responsive element (DRE) sequence and activates expression of downstream genes involved in drought- and salt-stress response in Arabidopsis thaliana. Intact DREB2A expression does not activate downstream genes under normal growth conditions. A negative regulatory domain exists in the central region of DREB2A, and deletion of this region transforms DREB2A to a constitutive active form (DREB2A CA). We carried out microarray analysis of transgenic Arabidopsis-overexpressing DREB2A CA and found that the overexpression of DREB2A CA induces not only drought- and salt-responsive genes but also heat-shock (HS)-related genes. Moreover, we found that transient induction of the DREB2A occurs rapidly by HS stress, and that the sGFP-DREB2A protein accumulates in nuclei of HS-stressed cells. DREB2A up-regulated genes were classified into three groups based on their expression patterns: genes induced by HS, genes induced by drought stress, and genes induced by both HS and drought stress. DREB2A up-regulated genes were down-regulated in DREB2A knockout mutants under stress conditions. Thermotolerance was significantly increased in plants overexpressing DREB2A CA and decreased in DREB2A knockout plants. Collectively, these results indicate that DREB2A functions in both water and HS-stress responses.


Frontiers in Plant Science | 2014

Response of plants to water stress

Yuriko Osakabe; Keishi Osakabe; Kazuo Shinozaki; Lam-Son Phan Tran

Water stress adversely impacts many aspects of the physiology of plants, especially photosynthetic capacity. If the stress is prolonged, plant growth, and productivity are severely diminished. Plants have evolved complex physiological and biochemical adaptations to adjust and adapt to a variety of environmental stresses. The molecular and physiological mechanisms associated with water-stress tolerance and water-use efficiency have been extensively studied. The systems that regulate plant adaptation to water stress through a sophisticated regulatory network are the subject of the current review. Molecular mechanisms that plants use to increase stress tolerance, maintain appropriate hormone homeostasis and responses and prevent excess light damage, are also discussed. An understanding of how these systems are regulated and ameliorate the impact of water stress on plant productivity will provide the information needed to improve plant stress tolerance using biotechnology, while maintaining the yield and quality of crops.


Journal of Experimental Botany | 2013

Sensing the environment: key roles of membrane-localized kinases in plant perception and response to abiotic stress

Yuriko Osakabe; Kazuko Yamaguchi-Shinozaki; Kazuo Shinozaki; Lam-Son Phan Tran

Adverse environmental conditions have negative effects on plant growth and development. Receptor proteins on the plasma membrane sense various environmental stimuli and transduce them to downstream intra- and intercellular signalling networks. Receptor-like kinases (RLKs) play important roles in perceiving the extracellular ligands and activating the downstream pathway via phosphorylation of intracellular serine/threonine kinase domains. The Arabidopsis genome possesses >600 RLK-encoding genes, some of which are implicated in the perception of environmental signals during the life cycle of the sessile plants. Histidine kinases are also membrane-localized kinases and perceive osmotic stress and plant hormones. In this review, we focus on the RLKs and histidine kinases that play a role in plant response to abiotic stresses. We summarize our recent understanding of their specific roles in stress responses and absicisic acid (ABA) regulation. Elucidation of the functions of these kinases in the osmotic stress response will provide a better understanding of stress-sensing mechanisms in plants and help to identify potential candidate genes for genetic engineering of improved stress-tolerant crops.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Positive regulatory role of strigolactone in plant responses to drought and salt stress

Chien Van Ha; Marco Antonio Leyva-González; Yuriko Osakabe; Uyen Tran; Rie Nishiyama; Yasuko Watanabe; Maho Tanaka; Motoaki Seki; Shinjiro Yamaguchi; Nguyen Van Dong; Kazuko Yamaguchi-Shinozaki; Kazuo Shinozaki; Luis Herrera-Estrella; Lam-Son Phan Tran

Significance Environmental stresses, such as drought and high salinity, adversely affect plant growth and productivity. Although various phytohormones are known to be involved in regulation of plant stress responses, the role of strigolactone (SL) in this important process remains elusive. By using different molecular and physiological approaches, we provide compelling evidence that, in Arabidopsis, SL acts as positive regulator of plant responses to drought and salt stress, which was associated with shoot- rather than root-related traits. Comparative transcriptome analysis suggests that plants integrate multiple hormone-response pathways—at least SL, abscisic acid, and cytokinin pathways—for adaptation to environmental stress. Our findings demonstrate that genetic modulation of SL content/response could provide a new approach for development of crops with improved stress tolerance. This report provides direct evidence that strigolactone (SL) positively regulates drought and high salinity responses in Arabidopsis. Both SL-deficient and SL-response [more axillary growth (max)] mutants exhibited hypersensitivity to drought and salt stress, which was associated with shoot- rather than root-related traits. Exogenous SL treatment rescued the drought-sensitive phenotype of the SL-deficient mutants but not of the SL-response mutant, and enhanced drought tolerance of WT plants, confirming the role of SL as a positive regulator in stress response. In agreement with the drought-sensitive phenotype, max mutants exhibited increased leaf stomatal density relative to WT and slower abscisic acid (ABA)-induced stomatal closure. Compared with WT, the max mutants exhibited increased leaf water loss rate during dehydration and decreased ABA responsiveness during germination and postgermination. Collectively, these results indicate that cross-talk between SL and ABA plays an important role in integrating stress signals to regulate stomatal development and function. Additionally, a comparative microarray analysis of the leaves of the SL-response max2 mutant and WT plants under normal and dehydrative conditions revealed an SL-mediated network controlling plant responses to stress via many stress- and/or ABA-responsive and cytokinin metabolism-related genes. Our results demonstrate that plants integrate multiple hormone-response pathways for adaptation to environmental stress. Based on our results, genetic modulation of SL content/response could be applied as a potential approach to reduce the negative impact of abiotic stress on crop productivity.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Site-directed mutagenesis in Arabidopsis using custom-designed zinc finger nucleases

Keishi Osakabe; Yuriko Osakabe; Seiichi Toki

Site-directed mutagenesis in higher plants remains a significant technical challenge for basic research and molecular breeding. Here, we demonstrate targeted-gene inactivation for an endogenous gene in Arabidopsis using zinc finger nucleases (ZFNs). Engineered ZFNs for a stress-response regulator, the ABA-INSENSITIVE4 (ABI4) gene, cleaved their recognition sequences specifically in vitro, and ZFN genes driven by a heat-shock promoter were introduced into the Arabidopsis genome. After heat-shock induction, gene mutations with deletion and substitution in the ABI4 gene generated via ZFN-mediated cleavage were observed in somatic cells at frequencies as high as 3%. The homozygote mutant line zfn_abi4-1–1 for ABI4 exhibited the expected mutant phenotypes, i.e., ABA and glucose insensitivity. In addition, ZFN-mediated mutagenesis was applied to the DNA repair-deficient mutant plant, atku80. We found that lack of AtKu80, which plays a role in end-protection of dsDNA breaks, increased error-prone rejoining frequency by 2.6-fold, with increased end-degradation. These data demonstrate that an approach using ZFNs can be used for the efficient production of mutant plants for precision reverse genetics.


Plant Physiology | 2009

The Phytochrome-Interacting Factor PIF7 Negatively Regulates DREB1 Expression under Circadian Control in Arabidopsis

Satoshi Kidokoro; Kyonoshin Maruyama; Kazuo Nakashima; Yoshiyuki Imura; Yoshihiro Narusaka; Zabta Khan Shinwari; Yuriko Osakabe; Yasunari Fujita; Junya Mizoi; Kazuo Shinozaki; Kazuko Yamaguchi-Shinozaki

Transcription factors of the DRE-Binding1 (DREB1)/C-repeat binding factor family specifically interact with a cis-acting dehydration-responsive element/C-repeat involved in low-temperature stress-responsive gene expression in Arabidopsis (Arabidopsis thaliana). Expression of DREB1s is induced by low temperatures and is regulated by the circadian clock under unstressed conditions. Promoter sequences of DREB1s contain six conserved motifs, boxes I to VI. We analyzed the promoter region of DREB1C using transgenic plants and found that box V with the G-box sequence negatively regulates DREB1C expression under circadian control. The region around box VI contains positive regulatory elements for low-temperature-induced expression of DREB1C. Using yeast one-hybrid screens, we isolated cDNA encoding the transcriptional factor Phytochrome-Interacting Factor7 (PIF7), which specifically binds to the G-box of the DREB1C promoter. The PIF7 gene was expressed in rosette leaves, and the PIF7 protein was localized in the nuclei of the cells. Transactivation experiments using Arabidopsis protoplasts indicated that PIF7 functions as a transcriptional repressor for DREB1C expression and that its activity is regulated by PIF7-interacting factors TIMING OF CAB EXPRESSION1 and Phytochrome B, which are components of the circadian oscillator and the red light photoreceptor, respectively. Moreover, in the pif7 mutant, expression of DREB1B and DREB1C was not repressed under light conditions, indicating that PIF7 functions as a transcriptional repressor for the expression of DREB1B and DREB1C under circadian control. This negative regulation of DREB1 expression may be important for avoiding plant growth retardation by the accumulation of DREB1 proteins under unstressed conditions.

Collaboration


Dive into the Yuriko Osakabe's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Feng Qin

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge