Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Satoshi Nakamizo is active.

Publication


Featured researches published by Satoshi Nakamizo.


Nature Immunology | 2014

Perivascular leukocyte clusters are essential for efficient activation of effector T cells in the skin

Yohei Natsuaki; Gyohei Egawa; Satoshi Nakamizo; Sachiko Ono; Sho Hanakawa; Takaharu Okada; Nobuhiro Kusuba; Atsushi Otsuka; Akihiko Kitoh; Tetsuya Honda; Saeko Nakajima; Soken Tsuchiya; Yukihiko Sugimoto; Ken J. Ishii; Hiroko Tsutsui; Hideo Yagita; Yoichiro Iwakura; Masato Kubo; Lai guan Ng; Takashi Hashimoto; Judilyn Fuentes; Emma Guttman-Yassky; Yoshiki Miyachi; Kenji Kabashima

It remains largely unclear how antigen-presenting cells (APCs) encounter effector or memory T cells efficiently in the periphery. Here we used a mouse contact hypersensitivity (CHS) model to show that upon epicutaneous antigen challenge, dendritic cells (DCs) formed clusters with effector T cells in dermal perivascular areas to promote in situ proliferation and activation of skin T cells in a manner dependent on antigen and the integrin LFA-1. We found that DCs accumulated in perivascular areas and that DC clustering was abrogated by depletion of macrophages. Treatment with interleukin 1α (IL-1α) induced production of the chemokine CXCL2 by dermal macrophages, and DC clustering was suppressed by blockade of either the receptor for IL-1 (IL-1R) or the receptor for CXCL2 (CXCR2). Our findings suggest that the dermal leukocyte cluster is an essential structure for elicitating acquired cutaneous immunity.


Scientific Reports | 2013

Intravital analysis of vascular permeability in mice using two-photon microscopy

Gyohei Egawa; Satoshi Nakamizo; Yohei Natsuaki; Hiromi Doi; Yoshiki Miyachi; Kenji Kabashima

Blood vessel endothelium forms a semi-permeable barrier and its permeability controls the traffics of plasma contents. Here we report an intravital evaluation system for vascular permeability in mice using two-photon microscopy. We used various sizes of fluorescein-conjugated dextran as a tracer and its efflux was quantified by measuring the changes of fluorescent intensity both on the blood vessel area and the interstitial space. Using this system, we demonstrated that skin blood vessels limited the passage of dextran larger than 70 kDa under homeostatic conditions. We evaluated the kinetics of vascular permeability in histamine- or IgE-induced type I allergic models and a hapten-induced type IV allergic model. In such inflammatory conditions, the hyperpermeability was selectively induced in the postcapillary venules and dextran as large as 2000-kDa leaked from the bloods. Taken together, our study provides a convenient method to characterize the skin blood vessels as a traffic barrier in physiological conditions.


Journal of Investigative Dermatology | 2014

IL-17A as an Inducer for Th2 Immune Responses in Murine Atopic Dermatitis Models

Saeko Nakajima; Akihiko Kitoh; Gyohei Egawa; Yohei Natsuaki; Satoshi Nakamizo; Catharina Sagita Moniaga; Atsushi Otsuka; Tetsuya Honda; Sho Hanakawa; Wataru Amano; Yoichiro Iwakura; Susumu Nakae; Masato Kubo; Yoshiki Miyachi; Kenji Kabashima

Atopic dermatitis (AD) is generally regarded as a type 2 helper T (Th2)-mediated inflammatory skin disease. Although the number of IL-17A-producing cells is increased in the peripheral blood and in acute skin lesion of AD patients, the role of IL-17A in the pathogenesis of AD remains unclear. To clarify this issue, we used murine AD models in an IL-17A-deficient condition. In a repeated hapten application-induced AD model, skin inflammation, IL-4 production in the draining lymph nodes (LNs), and hapten-specific IgG1 and IgE induction were suppressed in IL-17A-deficient mice. Vγ4(+) γδ T cells in the skin-draining LNs and Vγ5(-) dermal γδ T cells in the skin were the major sources of IL-17A. Consistently, in flaky-tail (Flg(ft/ft) ma/ma) mice, spontaneous development of AD-like dermatitis and IgE induction were attenuated by IL-17A deficiency. Moreover, Th2 differentiation from naive T cells was promoted in vitro by the addition of IL-17A. Taken together, our results suggest that IL-17A mediates Th2-type immune responses and that IL-17A signal may be a therapeutic target of AD.


Journal of Investigative Dermatology | 2014

IL-23 from Langerhans Cells Is Required for the Development of Imiquimod-Induced Psoriasis-Like Dermatitis by Induction of IL-17A-Producing γδ T Cells

Ryutaro Yoshiki; Kenji Kabashima; Tetsuya Honda; Satoshi Nakamizo; Yu Sawada; Kazunari Sugita; Haruna Yoshioka; Shun Ohmori; Bernard Malissen; Yoshiki Tokura; Motonobu Nakamura

Psoriasis is a common chronic inflammatory skin disease that involves dysregulated interplay between immune cells and keratinocytes. Recently, it has been reported that IL-23 induces CCR6+ γδ T cells, which have the pivotal role in psoriasis-like skin inflammation in mice of producing IL-17A and IL-22. Langerhans cells (LCs) are a subset of dendritic cells that reside in the epidermis and regulate immune responses. The role of LCs has been extensively investigated in contact hypersensitivity, but their role in psoriasis remains to be clarified. In this study, we focused on Th17-related factors and assessed the role of LCs and γδ T cells in the development of psoriasis using a mouse psoriasis model triggered by topical application of imiquimod (IMQ). LC depletion by means of diphtheria toxin (DT) in Langerin DT receptor-knocked-in mice suppressed hyperkeratosis, parakeratosis, and ear swelling in the IMQ-treated regions. In addition, LC-depleted mice showed decreased levels of Th17-related cytokines in IMQ-treated skin lesions. Moreover, the IMQ-treated skin of LC-depleted mice showed a decreased number of IL-17A-producing CCR6+ γδ T cells. These results suggest that LCs are required for the development of psoriasis-like lesions induced by IMQ in mice.


Nature Immunology | 2013

Mast cell maturation is driven via a group III phospholipase A 2-prostaglandin D2-DP1 receptor paracrine axis

Yoshitaka Taketomi; Noriko Ueno; Takumi Kojima; Hiroyasu Sato; Remi Murase; Kei Yamamoto; Satoshi Tanaka; Mariko Sakanaka; Masanori Nakamura; Yasumasa Nishito; Momoko Kawana; Naotomo Kambe; Kazutaka Ikeda; Ryo Taguchi; Satoshi Nakamizo; Kenji Kabashima; Michael H. Gelb; Makoto Arita; Takehiko Yokomizo; Motonao Nakamura; Kikuko Watanabe; Hiroyuki Hirai; Masataka Nakamura; Yoshimichi Okayama; Chisei Ra; Kosuke Aritake; Yoshihiro Urade; Kazushi Morimoto; Yukihiko Sugimoto; Takao Shimizu

Microenvironment-based alterations in phenotypes of mast cells influence the susceptibility to anaphylaxis, yet the mechanisms underlying proper maturation of mast cells toward an anaphylaxis-sensitive phenotype are incompletely understood. Here we report that PLA2G3, a mammalian homolog of anaphylactic bee venom phospholipase A2, regulates this process. PLA2G3 secreted from mast cells is coupled with fibroblastic lipocalin-type PGD2 synthase (L-PGDS) to provide PGD2, which facilitates mast-cell maturation via PGD2 receptor DP1. Mice lacking PLA2G3, L-PGDS or DP1, mast cell–deficient mice reconstituted with PLA2G3-null or DP1-null mast cells, or mast cells cultured with L-PGDS–ablated fibroblasts exhibited impaired maturation and anaphylaxis of mast cells. Thus, we describe a lipid-driven PLA2G3–L-PGDS–DP1 loop that drives mast cell maturation.


Journal of Experimental Medicine | 2014

12-hydroxyheptadecatrienoic acid promotes epidermal wound healing by accelerating keratinocyte migration via the BLT2 receptor

Min Liu; Kazuko Saeki; Takehiko Matsunobu; Toshiaki Okuno; Tomoaki Koga; Yukihiko Sugimoto; Chieko Yokoyama; Satoshi Nakamizo; Kenji Kabashima; Shuh Narumiya; Takao Shimizu; Takehiko Yokomizo

Endogenous 12-HHT, or a synthetic BLT2 agonist promotes epidermal wound closure by stimulating BLT2 on keratinocytes, inducing TNF and MMP production.


The Journal of Allergy and Clinical Immunology | 2014

Possible new therapeutic strategy to regulate atopic dermatitis through upregulating filaggrin expression.

Atsushi Otsuka; Hiromi Doi; Gyohei Egawa; Akiko Maekawa; Tomoko Fujita; Satoshi Nakamizo; Chisa Nakashima; Saeko Nakajima; Takeshi Watanabe; Yoshiki Miyachi; Shuh Narumiya; Kenji Kabashima

BACKGROUND Nonsense mutations in filaggrin (FLG) represent a significant genetic factor in the cause of atopic dermatitis (AD). OBJECTIVE It is of great importance to find drug candidates that upregulate FLG expression and to determine whether increased FLG expression controls the development of AD. METHODS We screened a library of bioactives by using an FLG reporter assay to find candidates that promoted FLG mRNA expression using a human immortalized keratinocyte cell line (HaCaT). We studied the effect of the compound on keratinocytes using the human skin equivalent model. We examined the effect of the compound on AD-like skin inflammation in NC/Nga mice. RESULTS JTC801 promoted FLG mRNA and protein expression in both HaCaT and normal human epidermal keratinocytes. Intriguingly, JTC801 promoted the mRNA and protein expression levels of FLG but not the mRNA levels of other makers for keratinocyte differentiation, including loricrin, keratin 10, and transglutaminase 1, in a human skin equivalent model. In addition, oral administration of JTC801 promoted the protein level of Flg and suppressed the development of AD-like skin inflammation in NC/Nga mice. CONCLUSION This is the first observation that the compound, which increased FLG expression in human and murine keratinocytes, attenuated the development of AD-like skin inflammation in mice. Our findings provide evidence that modulation of FLG expression can be a novel therapeutic target for AD.


Journal of Clinical Investigation | 2012

Severe dermatitis with loss of epidermal Langerhans cells in human and mouse zinc deficiency

Tatsuyoshi Kawamura; Youichi Ogawa; Yuumi Nakamura; Satoshi Nakamizo; Yoshihiro Ohta; Hajime Nakano; Kenji Kabashima; Ichiro Katayama; Schuichi Koizumi; Tatsuhiko Kodama; Atsuhito Nakao; Shinji Shimada

Zinc deficiency can be an inherited disorder, in which case it is known as acrodermatitis enteropathica (AE), or an acquired disorder caused by low dietary intake of zinc. Even though zinc deficiency diminishes cellular and humoral immunity, patients develop immunostimulating skin inflammation. Here, we have demonstrated that despite diminished allergic contact dermatitis in mice fed a zinc-deficient (ZD) diet, irritant contact dermatitis (ICD) in these mice was more severe and prolonged than that in controls. Further, histological examination of ICD lesions in ZD mice revealed subcorneal vacuolization and epidermal pallor, histological features of AE. Consistent with the fact that ATP release from chemically injured keratinocytes serves as a causative mediator of ICD, we found that the severe ICD response in ZD mice was attenuated by local injection of soluble nucleoside triphosphate diphosphohydrolase. In addition, skin tissue from ZD mice with ICD showed increased levels of ATP, as did cultured wild-type keratinocytes treated with chemical irritants and the zinc-chelating reagent TPEN. Interestingly, numbers of epidermal Langerhans cells (LCs), which play a protective role against ATP-mediated inflammatory signals, were decreased in ZD mice as well as samples from ZD patients. These findings suggest that upon exposure to irritants, aberrant ATP release from keratinocytes and impaired LC-dependent hydrolysis of nucleotides may be important in the pathogenesis of AE.


Journal of Experimental Medicine | 2015

Resolvin E1 inhibits dendritic cell migration in the skin and attenuates contact hypersensitivity responses

Yu Sawada; Tetsuya Honda; Sho Hanakawa; Satoshi Nakamizo; Teruasa Murata; Yuri Ueharaguchi-Tanada; Sachiko Ono; Wataru Amano; Saeko Nakajima; Gyohei Egawa; Hideaki Tanizaki; Atsushi Otsuka; Akihiko Kitoh; Teruki Dainichi; Narihito Ogawa; Yuichi Kobayashi; Takehiko Yokomizo; Makoto Arita; Motonobu Nakamura; Yoshiki Miyachi; Kenji Kabashima

Sawada et al. report that Resolvin E1 (RvE1) down-regulates DC motility in both steady state and inflammatory conditions in the skin and exerts its antiinflammatory effects in contact hypersensitivity. They propose the LTB4-BLT1 signaling blockade as a possible major mechanism through which RvE1 exerts its regulatory effects.


Seminars in Immunopathology | 2015

Commensal bacteria and cutaneous immunity.

Satoshi Nakamizo; Gyohei Egawa; Tetsuya Honda; Saeko Nakajima; Yasmine Belkaid; Kenji Kabashima

The skin is the human body’s largest organ and is home to a diverse and complex variety of innate and adaptive immune functions that protect against pathogenic invasion. Recent studies have demonstrated that cutaneous commensal bacteria modulated the host immune system. For example, Staphylococcus epidermidis, a skin commensal bacterium, has been demonstrated to induce cutaneous interferon (IFN)-γ- and interleukin (IL)-17A-producing T cells. In addition, cutaneous microbiota changes occur in the chronic inflammatory skin disorders, such as atopic dermatitis, and may influence the activity of skin diseases. In this article, we will review the recent findings related to the interactions of the commensal bacteria with skin homeostasis and discuss the role of the dysbiosis of these bacteria in the pathogenesis of skin diseases.

Collaboration


Dive into the Satoshi Nakamizo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge