Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Satoshi Uematsu is active.

Publication


Featured researches published by Satoshi Uematsu.


Cell | 2006

Pathogen Recognition and Innate Immunity

Shizuo Akira; Satoshi Uematsu; Osamu Takeuchi

Microorganisms that invade a vertebrate host are initially recognized by the innate immune system through germline-encoded pattern-recognition receptors (PRRs). Several classes of PRRs, including Toll-like receptors and cytoplasmic receptors, recognize distinct microbial components and directly activate immune cells. Exposure of immune cells to the ligands of these receptors activates intracellular signaling cascades that rapidly induce the expression of a variety of overlapping and unique genes involved in the inflammatory and immune responses. New insights into innate immunity are changing the way we think about pathogenesis and the treatment of infectious diseases, allergy, and autoimmunity.


Nature | 2006

Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses.

Hiroki Kato; Osamu Takeuchi; Shintaro Sato; Mitsutoshi Yoneyama; Masahiro Yamamoto; Kosuke Matsui; Satoshi Uematsu; Andreas Jung; Taro Kawai; Ken J. Ishii; Osamu Yamaguchi; Kinya Otsu; Tohru Tsujimura; Chang-Sung Koh; Caetano Reis e Sousa; Yoshiharu Matsuura; Takashi Fujita; Shizuo Akira

The innate immune system senses viral infection by recognizing a variety of viral components (including double-stranded (ds)RNA) and triggers antiviral responses. The cytoplasmic helicase proteins RIG-I (retinoic-acid-inducible protein I, also known as Ddx58) and MDA5 (melanoma-differentiation-associated gene 5, also known as Ifih1 or Helicard) have been implicated in viral dsRNA recognition. In vitro studies suggest that both RIG-I and MDA5 detect RNA viruses and polyinosine-polycytidylic acid (poly(I:C)), a synthetic dsRNA analogue. Although a critical role for RIG-I in the recognition of several RNA viruses has been clarified, the functional role of MDA5 and the relationship between these dsRNA detectors in vivo are yet to be determined. Here we use mice deficient in MDA5 (MDA5-/-) to show that MDA5 and RIG-I recognize different types of dsRNAs: MDA5 recognizes poly(I:C), and RIG-I detects in vitro transcribed dsRNAs. RNA viruses are also differentially recognized by RIG-I and MDA5. We find that RIG-I is essential for the production of interferons in response to RNA viruses including paramyxoviruses, influenza virus and Japanese encephalitis virus, whereas MDA5 is critical for picornavirus detection. Furthermore, RIG-I-/- and MDA5-/- mice are highly susceptible to infection with these respective RNA viruses compared to control mice. Together, our data show that RIG-I and MDA5 distinguish different RNA viruses and are critical for host antiviral responses.


Nature | 2008

Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1beta production.

Tatsuya Saitoh; Naonobu Fujita; Myoung Ho Jang; Satoshi Uematsu; Bo-Gie Yang; Takashi Satoh; Hiroko Omori; Takeshi Noda; Naoki Yamamoto; Masaaki Komatsu; Keiji Tanaka; Taro Kawai; Tohru Tsujimura; Osamu Takeuchi; Tamotsu Yoshimori; Shizuo Akira

Systems for protein degradation are essential for tight control of the inflammatory immune response. Autophagy, a bulk degradation system that delivers cytoplasmic constituents into autolysosomes, controls degradation of long-lived proteins, insoluble protein aggregates and invading microbes, and is suggested to be involved in the regulation of inflammation. However, the mechanism underlying the regulation of inflammatory response by autophagy is poorly understood. Here we show that Atg16L1 (autophagy-related 16-like 1), which is implicated in Crohns disease, regulates endotoxin-induced inflammasome activation in mice. Atg16L1-deficiency disrupts the recruitment of the Atg12-Atg5 conjugate to the isolation membrane, resulting in a loss of microtubule-associated protein 1 light chain 3 (LC3) conjugation to phosphatidylethanolamine. Consequently, both autophagosome formation and degradation of long-lived proteins are severely impaired in Atg16L1-deficient cells. Following stimulation with lipopolysaccharide, a ligand for Toll-like receptor 4 (refs 8, 9), Atg16L1-deficient macrophages produce high amounts of the inflammatory cytokines IL-1β and IL-18. In lipopolysaccharide-stimulated macrophages, Atg16L1-deficiency causes Toll/IL-1 receptor domain-containing adaptor inducing IFN-β (TRIF)-dependent activation of caspase-1, leading to increased production of IL-1β. Mice lacking Atg16L1 in haematopoietic cells are highly susceptible to dextran sulphate sodium-induced acute colitis, which is alleviated by injection of anti-IL-1β and IL-18 antibodies, indicating the importance of Atg16L1 in the suppression of intestinal inflammation. These results demonstrate that Atg16L1 is an essential component of the autophagic machinery responsible for control of the endotoxin-induced inflammatory immune response.


Nature Medicine | 2005

Sequence-specific potent induction of IFN-alpha by short interfering RNA in plasmacytoid dendritic cells through TLR7

Veit Hornung; Margit Guenthner-Biller; Carole Bourquin; Andrea Ablasser; Martin Schlee; Satoshi Uematsu; Anne M. Noronha; Muthiah Manoharan; Shizuo Akira; Antonin de Fougerolles; Stefan Endres; Gunther Hartmann

Short interfering RNA (siRNA) is used in RNA interference technology to avoid non-target-related induction of type I interferon (IFN) typical for long double-stranded RNA. Here we show that in plasmacytoid dendritic cells (PDC), an immune cell subset specialized in the detection of viral nucleic acids and production of type I IFN, some siRNA sequences, independent of their GU content, are potent stimuli of IFN-α production. Localization of the immunostimulatory motif on the sense strand of a potent IFN-α-inducing siRNA allowed dissection of immunostimulation and target silencing. Injection into mice of immunostimulatory siRNA, when complexed with cationic liposomes, induced systemic immune responses in the same range as the TLR9 ligand CpG, including IFN-α in serum and activation of T cells and dendritic cells in spleen. Immunostimulation by siRNA was absent in TLR7-deficient mice. Thus sequence-specific TLR7-dependent immune recognition in PDC needs to be considered as an additional biological activity of siRNA, which then should be termed immunostimulatory RNA (isRNA).


Nature | 2002

Essential role for TIRAP in activation of the signalling cascade shared by TLR2 and TLR4.

Masahiro Yamamoto; Shintaro Sato; Hiroaki Hemmi; Hideki Sanjo; Satoshi Uematsu; Tsuneyasu Kaisho; Katsuaki Hoshino; Osamu Takeuchi; Masaya Kobayashi; Takashi Fujita; Kiyoshi Takeda; Shizuo Akira

Signal transduction through Toll-like receptors (TLRs) originates from their intracellular Toll/interleukin-1 receptor (TIR) domain, which binds to MyD88, a common adaptor protein containing a TIR domain. Although cytokine production is completely abolished in MyD88-deficient mice, some responses to lipopolysaccharide (LPS), including the induction of interferon-inducible genes and the maturation of dendritic cells, are still observed. Another adaptor, TIRAP (also known as Mal), has been cloned as a molecule that specifically associates with TLR4 and thus may be responsible for the MyD88-independent response. Here we report that LPS-induced splenocyte proliferation and cytokine production are abolished in mice lacking TIRAP. As in MyD88-deficient mice, LPS activation of the nuclear factor NF-κB and mitogen-activated protein kinases is induced with delayed kinetics in TIRAP-deficient mice. Expression of interferon-inducible genes and the maturation of dendritic cells is observed in these mice; they also show defective response to TLR2 ligands, but not to stimuli that activate TLR3, TLR7 or TLR9. In contrast to previous suggestions, our results show that TIRAP is not specific to TLR4 signalling and does not participate in the MyD88-independent pathway. Instead, TIRAP has a crucial role in the MyD88-dependent signalling pathway shared by TLR2 and TLR4.


Nature Immunology | 2003

TRAM is specifically involved in the Toll-like receptor 4–mediated MyD88-independent signaling pathway

Masahiro Yamamoto; Shintaro Sato; Hiroaki Hemmi; Satoshi Uematsu; Katsuaki Hoshino; Tsuneyasu Kaisho; Osamu Takeuchi; Kiyoshi Takeda; Shizuo Akira

Recognition of pathogens by Toll-like receptors (TLRs) triggers innate immune responses through signaling pathways mediated by Toll–interleukin 1 receptor (TIR) domain–containing adaptors such as MyD88, TIRAP and TRIF. MyD88 is a common adaptor that is essential for proinflammatory cytokine production, whereas TRIF mediates the MyD88-independent pathway from TLR3 and TLR4. Here we have identified a fourth TIR domain–containing adaptor, TRIF-related adaptor molecule (TRAM), and analyzed its physiological function by gene targeting. TRAM-deficient mice showed defects in cytokine production in response to the TLR4 ligand, but not to other TLR ligands. TLR4- but not TLR3-mediated MyD88-independent interferon-β production and activation of signaling cascades were abolished in TRAM-deficient cells. Thus, TRAM provides specificity for the MyD88-independent component of TLR4 signaling.


Nature Immunology | 2004

Interferon-α induction through Toll-like receptors involves a direct interaction of IRF7 with MyD88 and TRAF6

Taro Kawai; Shintaro Sato; Ken J. Ishii; Cevayir Coban; Hiroaki Hemmi; Masahiro Yamamoto; Kenta Terai; Michiyuki Matsuda; Jun-ichiro Inoue; Satoshi Uematsu; Osamu Takeuchi; Shizuo Akira

Toll-like receptors (TLRs) are involved in the recognition of microbial pathogens. A subset of TLRs, TLR7, TLR8 and TLR9, induces antiviral responses by producing interferon-α (IFN-α). Production of IFN-α is dependent on the Toll–interleukin-1 receptor domain–containing adaptor MyD88. Here we show that MyD88 formed a complex with the transcription factor IRF7 but not with IRF3. The death domain of MyD88 interacted with an inhibitory domain of IRF7, and this interaction resulted in activation of the IFN-α-dependent promoters. Furthermore, the adaptor molecule TRAF6 also bound and activated IRF7. Ubiquitin ligase activity of TRAF6 was required for IRF7 activation. These results indicate that TLR-mediated IFN-α induction requires the formation of a complex consisting of MyD88, TRAF6 and IRF7 as well as TRAF6-dependent ubiquitination.


Journal of Experimental Medicine | 2005

Nucleic acids of mammalian origin can act as endogenous ligands for Toll-like receptors and may promote systemic lupus erythematosus

Franck J. Barrat; Thea Meeker; Josh Gregorio; Jean H. Chan; Satoshi Uematsu; Shizuo Akira; Bonnie Chang; Omar Duramad; Robert L. Coffman

Raised serum levels of interferon (IFN)-α have been observed in systemic lupus erythematosus (SLE) patients, and these levels are correlated with both disease activity and severity. The origin of this IFN-α is still unclear, but increasing evidence suggests the critical involvement of activated plasmacytoid predendritic cells (PDCs). In SLE patients, DNA and RNA viruses, as well as immune complexes (ICs), that consist of autoantibodies specific to self-DNA and RNA protein particles can stimulate production of IFN-α. We have developed three series of oligonucleotide (ODN)-based inhibitors of Toll-like receptor (TLR) signaling. These ODNs include inhibitors of TLR9, inhibitors of TLR7 but not TLR9, and sequences that inhibit both TLR7 and TLR9. Specificity of these inhibitors is confirmed by inhibition of IFN-α production by PDCs in response to DNA or RNA viruses. We show that mammalian DNA and RNA, in the form of ICs, are potent self-antigens for TLR9 and TLR7, respectively, and induce IFN-α production by PDCs. This work suggests that TLRs may have a critical role in the promotion of lupus through the induction of IFN-α by PDCs. These inhibitors of TLR signaling thus represent novel therapeutic agents with potential for the treatment of lupus.


Nature Immunology | 2006

A Toll-like receptor–independent antiviral response induced by double-stranded B-form DNA

Ken J. Ishii; Cevayir Coban; Hiroki Kato; Ken Takahashi; Yuichi Torii; Fumihiko Takeshita; Holger Ludwig; Gerd Sutter; Koichi Suzuki; Hiroaki Hemmi; Shintaro Sato; Masahiro Yamamoto; Satoshi Uematsu; Taro Kawai; Osamu Takeuchi; Shizuo Akira

The innate immune system recognizes nucleic acids during infection or tissue damage; however, the mechanisms of intracellular recognition of DNA have not been fully elucidated. Here we show that intracellular administration of double-stranded B-form DNA (B-DNA) triggered antiviral responses including production of type I interferons and chemokines independently of Toll-like receptors or the helicase RIG-I. B-DNA activated transcription factor IRF3 and the promoter of the gene encoding interferon-β through a signaling pathway that required the kinases TBK1 and IKKi, whereas there was substantial activation of transcription factor NF-κB independent of both TBK and IKKi. IPS-1, an adaptor molecule linking RIG-I and TBK1, was involved in B-DNA-induced activation of interferon-β and NF-κB. B-DNA signaling by this pathway conferred resistance to viral infection in a way dependent on both TBK1 and IKKi. These results suggest that both TBK1 and IKKi are required for innate immune activation by B-DNA, which might be important in antiviral innate immunity and other DNA-associated immune disorders.*Note: In the version of this article initially published, the GEO database accession number is missing. This should be the final subsection of Methods, as follows: code. GEO: microarray data, GSE4171. The error has been corrected in the PDF version of the article.


Nature Immunology | 2005

Stimulation of the vagus nerve attenuates macrophage activation by activating the Jak2-STAT3 signaling pathway.

Wouter J. de Jonge; Esmerij P. van der Zanden; Maarten F. Bijlsma; David J. van Westerloo; Roelof J. Bennink; Hans-Rudolf Berthoud; Satoshi Uematsu; Shizuo Akira; Rene M. van den Wijngaard; Guy E. Boeckxstaens

Acetylcholine released by efferent vagus nerves inhibits macrophage activation. Here we show that the anti-inflammatory action of nicotinic receptor activation in peritoneal macrophages was associated with activation of the transcription factor STAT3. STAT3 was phosphorylated by the tyrosine kinase Jak2 that was recruited to the α7 subunit of the nicotinic acetylcholine receptor. The anti-inflammatory effect of nicotine required the ability of phosphorylated STAT3 to bind and transactivate its DNA response elements. In a mouse model of intestinal manipulation, stimulation of the vagus nerve ameliorated surgery-induced inflammation and postoperative ileus by activating STAT3 in intestinal macrophages. We conclude that the vagal anti-inflammatory pathway acts by α7 subunit–mediated Jak2-STAT3 activation.

Collaboration


Dive into the Satoshi Uematsu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge