Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Satoshi Yamamura is active.

Publication


Featured researches published by Satoshi Yamamura.


British Journal of Pharmacology | 2012

Clozapine, but not haloperidol, enhances glial d-serine and L-glutamate release in rat frontal cortex and primary cultured astrocytes

Shunske Tanahashi; Satoshi Yamamura; Masanori Nakagawa; Eishi Motomura; Motohiro Okada

BACKGROUND AND PURPOSE Deficient transmission at the glutamate NMDA receptor is considered a key component of the pathophysiology of schizophrenia. However, the effects of antipsychotic drugs on the release of the endogenous NMDA receptor partial agonist, d‐serine, remain to be clarified.


European Journal of Pharmacology | 2011

Effect of novel atypical antipsychotic, blonanserin, on extracellular neurotransmitter level in rat prefrontal cortex.

Keiko Ohoyama; Satoshi Yamamura; Tatsuya Hamaguchi; Masanori Nakagawa; Eishi Motomura; Takashi Shiroyama; Hisashi Tanii; Motohiro Okada

To clarify the mechanisms of action of blonanserin, an atypical antipsychotic drug, we studied the effects of systemic administration of blonanserin and risperidone on extracellular levels of norepinephrine, dopamine, serotonin, GABA and glutamate in the medial prefrontal cortex using microdialysis, and neuronal firing in the ventral tegmental area, locus coeruleus, dorsal raphe nucleus and mediodorsal thalamic nucleus using radiotelemetry. The binding affinities of blonanserin to D(2) and 5-HT(2A) receptors in the rat brain were confirmed and found to be similar. Blonanserin transiently increased neuronal firing in locus coeruleus and ventral tegmental area but not in dorsal raphe nucleus or mediodorsal thalamic nucleus, whereas risperidone increased the firing in locus coeruleus, ventral tegmental area and dorsal raphe nucleus but not in mediodorsal thalamic nucleus. Blonanserin persistently increased frontal extracellular levels of norepinephrine and dopamine but not serotonin, GABA or glutamate, whereas risperidone persistently increased those of norepinephrine, dopamine and serotonin but not GABA or glutamate. These results suggest a pharmacological correlation between the stimulatory effects of these antipsychotics on frontal monoamine release and neuronal activity in monoaminergic nuclei. Inhibition of the α(2) adrenoceptor increased extracellular monoamine levels and enhanced blonanserin-induced increase in extracellular serotonin level. These results indicated that the combination of antagonism of D(2) and 5-HT(2A) receptors contribute to the rise in extracellular levels of norepinephrine and dopamine, and that α(2) adrenoceptors play important roles in frontal serotonin release. They also suggest that blonanserin-induced activation of monoaminergic transmission could be, at least partially, involved in atypical antipsychotic properties of blonanserin.


Neuropharmacology | 2009

Zonisamide enhances delta receptor-associated neurotransmitter release in striato-pallidal pathway.

Satoshi Yamamura; Keiko Ohoyama; Hiroshi Nagase; Motohiro Okada

A recent randomized control study demonstrated that zonisamide (ZNS), an antiepileptic drug, is effective in Parkinsons disease at the lower than the therapeutic doses against epilepsy (25-50 mg/day); however, the detailed mechanism of antiparkinsonian effects of ZNS remains to be clarified. To determine the mechanism of antiparkinsonian effect of ZNS, we investigated the effects of ZNS on extracellular levels of dopamine in the striatum (STR), glutamate in substantia nigra pars reticulata (SNr), GABA in globus pallidus (GP), subthalamic nucleus (STN) and SNr, using multiple microdialysis probes. Striatal perfusion of 1000 microM ZNS (within therapeutic-relevant concentration against epilepsy) increased extracellular levels of dopamine in STR, whereas 100 microM ZNS (lower than the therapeutic-relevant concentration against epilepsy but within the therapeutic rage against Parkinsons disease) did not affect it. Striatal perfusion of ZNS (100 and 1000 microM) decreased the extracellular levels of GABA in STN and glutamate in SNr, but decreased extracellular GABA level in GP without affecting GABA level in SNr. These concentration-dependent effects of ZNS on extracellular neurotransmitter levels were independent of dopamine and delta(2) receptors; however, blockade of delta(1) receptor inhibited the effects of ZNS. Furthermore, activation of delta(1) receptor enhanced the effects of ZNS on neurotransmitter level. These results suggest that ZNS does not affect the direct pathway but inhibits the indirect pathway, which is mediated by delta(1) receptor. Therefore, the antiparkinsonian effects of ZNS seem to be mediated through the interaction between lower than therapeutically-relevant concentration against epilepsy of ZNS (100 microM) and delta(1) receptor.


British Journal of Pharmacology | 2009

Effects of zotepine on extracellular levels of monoamine, GABA and glutamate in rat prefrontal cortex

Satoshi Yamamura; Keiko Ohoyama; Tatsuya Hamaguchi; Masanori Nakagawa; Dai Suzuki; Takuya Matsumoto; Eishi Motomura; Hisashi Tanii; Takashi Shiroyama; Motohiro Okada

Background and purpose:  The atypical antipsychotic drug, zotepine, is effective in treatment of schizophrenia and acute mania, but the incidence of seizures during treatment is higher than with other antipsychotics. In addition, the mechanisms underlying the clinical actions of zotepine remain uncharacterized.


Neuropharmacology | 2011

Different actions for acute and chronic administration of mirtazapine on serotonergic transmission associated with raphe nuclei and their innervation cortical regions.

Satoshi Yamamura; Masao Abe; Masanori Nakagawa; Shinichiro Ochi; Shu-ichi Ueno; Motohiro Okada

The atypical antidepressant, mirtazapine enhances noradrenergic transmission, but its effects on serotonergic transmission remain to be clarified. The present study determined the effects of acute and chronic administration of mirtazapine on serotonergic transmissions in raphe nuclei and their innervation regions, frontal and entorhinal cortex, using multiple-probes microdialysis with real-time PCR and western blotting. Acute administration of mirtazapine did not affect extracellular serotonin level in raphe nuclei or cortex; however, chronic administration increased extracellular serotonin level in raphe nuclei without affecting that in cortex. Blockade of 5-HT1A receptor, but not that of the 5-HT2A/2C receptor, enhanced the effects of acute administration of mirtazapine on extracellular serotonin level in raphe nuclei. Chronic mirtazapine administration reduced the inhibitory function associated with somatodendritic 5-HT1A receptor in raphe nuclei, but enhanced postsynaptic 5-HT1A receptor in serotonergic innervated cortical regions. Chronic administration reduced the expression of mRNA and protein of serotonin transporter and 5-HT1A receptor in raphe nuclei, but not in the cortices. These results suggested that acute administration of mirtazapine probably activated serotonergic transmission, but its stimulatory action was abolished by activated inhibitory 5-HT1A receptor. Chronic administration of mirtazapine resulted in increased extracellular serotonin level via reduction of serotonin transporter with reduction of somatodendritic 5-HT1A autoreceptor function in raphe nuclei. These pharmacological actions of mirtazapine include its serotonergic profiles as noradrenergic and specific serotonergic antidepressant (NaSSA).


Epilepsy Research | 2009

Topiramate and zonisamide prevent paradoxical intoxication induced by carbamazepine and phenytoin

Satoshi Yamamura; Tatsuya Hamaguchi; Keiko Ohoyama; Yoshihiro Sugiura; Dai Suzuki; Shinich Kanehara; Masanori Nakagawa; Eishi Motomura; Takuya Matsumoto; Hisashi Tanii; Takashi Shiroyama; Motohiro Okada

The mechanisms of paradoxical aggravation of epileptic seizures induced by selected antiepileptic drugs (AEDs) remain unclear. The present study addressed this issue by determining the seizure-threshold doses of carbamazepine (CBZ) and phenytoin (PHT), as well the dose-dependent effects of CBZ, PHT, and carbonic anhydrase-inhibiting AEDs, acetazolamide (AZM), topiramate (TPM), and zonisamide (ZNS), on neurotransmitter release in rat hippocampus. The dose-dependent effects of AEDs on hippocampal extracellular levels of glutamate (Glu), GABA, norepinephrine (NE), dopamine (DA), and serotonin (5-HT) were determined by microdialysis with high-speed and high-sensitive extreme liquid chromatography. Proconvulsive effects of AEDs were determined by telemetric-electrocorticography. Therapeutically relevant doses of AZM, CBZ, TPM, and ZNS increased hippocampal extracellular levels of GABA, NE, DA, and 5-HT, while PHT had no effect. Supratherapeutic doses of AZM, CBZ, PHT, TPM, and ZNS decreased extracellular levels of GABA, NE, DA, and 5-HT, without affecting Glu levels. Toxic doses of CBZ and PHT produced seizures (paradoxical intoxication), markedly increasing all transmitter levels, but TPM and ZNS even at toxic doses did not produce seizure. Co-administration experiments showed that therapeutically relevant doses of CBZ or PHT reduced the seizure-threshold doses of PHT or CBZ, respectively. In contrast, therapeutically relevant doses of AZM, TPM, and ZNS elevated the seizure-threshold doses of CBZ and PHT. These results suggested that blockade of high percentage of the population of voltage-dependent sodium channels by CBZ and PHT might be important in inducing paradoxical intoxication/reaction, and that inhibition of carbonic anhydrase inhibits this effect. TPM and ZNS are candidate first-choice agents in treatment of epilepsy when first-line AEDs are ineffective.


Neuropharmacology | 2012

Novel δ1-receptor agonist KNT-127 increases the release of dopamine and L-glutamate in the striatum, nucleus accumbens and median pre-frontal cortex

Shunsuke Tanahashi; Yuto Ueda; Akira Nakajima; Satoshi Yamamura; Hiroshi Nagase; Motohiro Okada

The effects of systemic δ1-agonist on neurotransmission remains obscure, since no selective δ1-agonist exists that can penetrate the blood-brain barrier. Recently, we succeeded in synthesizing a putative δ1-receptor agonist, KNT-127, which has been demonstrated the effectiveness of systemic administration against anxiety and depressive-like behavior. To clarify the functional selectivity of KNT-127 and neurotransmission regulating system of δ1-receptor, the present study investigated the interaction between KNT-127 and δ-receptor antagonists on the release of dopamine, L-glutamate and GABA in nucleus accumbens (NAc), striatum and median pre-frontal cortex (mPFC) using multi-probe microdialysis. Intraperitoneal administration of KNT-127 increased the release of dopamine and L-glutamate in three regions, but decreased and increased GABA releases in respective NAc and mPFC without affecting that in striatum. The effects of KNT-127 in the three regions were abrogated by δ1-antagonist but not by δ2-antagonist. MK801 inhibited KNT-127-induced dopamine release in striatum and NAc, but enhanced that in mPFC, inhibited KNT-127-induced mPFC GABA release without affecting KNT-127-induced GABA reduction in NAc. Muscimol enhanced KNT-127-induced dopamine release in mPFC. Sulpiride inhibited KNT-127-induced reduction of GABA release in NAc. The results indicated that KNT-127 is a selective δ1-agonist, and suggested that δ1-receptor directly activates the release of dopamine and L-glutamate in the striatum, NAc and mPFC, but not that of GABA in the three regions. δ1-receptor indirectly inhibited GABA release in NAc via activated dopaminergic transmission, while δ1-receptor indirectly enhanced GABA release in mPFC via activated glutamatergic transmission.


British Journal of Pharmacology | 2013

ONO-2506 inhibits spike-wave discharges in a genetic animal model without affecting traditional convulsive tests via gliotransmission regulation.

Satoshi Yamamura; Masamitsu Hoshikawa; Kato Dai; Hiromitsu Saito; Noboru Suzuki; Osamu Niwa; Motohiro Okada

Anticonvulsants have been developed according to the traditional neurotransmission imbalance hypothesis. However, the anticonvulsive pharmacotherapy currently available remains unsatisfactory. To develop new antiepileptic drugs with novel antiepileptic mechanisms, we have tested the antiepileptic actions of ONO‐2506, a glial modulating agent, and its effects on tripartite synaptic transmission.


Neuroscience Letters | 2012

Levetiracetam inhibits neurotransmitter release associated with CICR.

Kouji Fukuyama; Shunsuke Tanahashi; Masanori Nakagawa; Satoshi Yamamura; Eishi Motomura; Takashi Shiroyama; Hisashi Tanii; Motohiro Okada

To define the antiepileptic mechanisms of levetiracetam (LEV), the present study determined the concentration-dependent effects of locally perfused LEV on the releases of norepinephrine, dopamine, serotonin, l-glutamate and GABA induced by 50 mMK(+)-evoked stimulation and agonists of ryanodine receptor (RyR) and inositol-triphosphate receptor (IP3R) in the median prefrontal cortex (mPFC) using in vivo microdialysis. Local perfusion with LEV (10, 30 and 100 μM) alone did not affect the extracellular levels of all neurotransmitters in the mPFC. The release of neurotransmitters induced by K(+)-evoked stimulation was inhibited by perfusion with LEV in a concentration-dependent manner, and those induced by agonists of RyR and IP3R were also inhibited by LEV. Specifically, the RyR-induced release was inhibited by 10 μM LEV, whereas the IP3R-induced release was inhibited by 100 μM LEV, but not by 10 or 30 μM LEV. The above results suggest that LEV has little effect on the components of normal synaptic transmission but selectively inhibits transmission induced by neuronal hyperactivation. Thus, the mechanisms of the antiepileptic and neuroprotective actions of LEV seem to be mediated, at least in part, through the combination of these two inhibitory effects on depolarization-induced and CICR-associated neurotransmitter releases.


Neuroscience Letters | 2009

Effects of zonisamide on neurotransmitter release associated with inositol triphosphate receptors

Satoshi Yamamura; Hiromitsu Saito; Noboru Suzuki; Sanae Kashimoto; Tatsuya Hamaguchi; Keiko Ohoyama; Dai Suzuki; Shinich Kanehara; Masanori Nakagawa; Takashi Shiroyama; Motohiro Okada

To clarify the antiepileptic mechanisms of zonisamide (ZNS), we determined the interaction between ZNS and inositol-1,4,5-triphosphate receptor (IP3R) on exocytosis of GABA and glutamate in rat frontal cortex using microdialysis. ZNS increased basal GABA release, but not glutamate, concentration-dependently, and reduced concentration-dependently K(+)-evoked GABA and glutamate releases. Inhibition and activation of IP3R reduced and enhanced basal and K(+)-evoked GABA releases, respectively. The K(+)-evoked glutamate release was reduced and enhanced by IP3R antagonist and agonist, respectively, whereas basal glutamate release was increased by IP3R agonist but not affected by IP3R antagonist. Under extracellular Ca(2+) depletion, IP3R agonist increased basal GABA and glutamate releases. The latter effects of IP3R agonist were weakly enhanced by ZNS, but such stimulatory action of ZNS was abolished by extracellular Ca(2+) depletion. In contrast, ZNS inhibited the stimulatory effect of IP3R agonist on K(+)-evoked release. The stimulatory effect of IP3R agonist on basal release was regulated by N-type voltage-sensitive Ca(2+) channel (VSCC) rather than P- and L-type VSCCs, whereas the stimulatory effect of IP3R agonist on K(+)-evoked release was regulated by P- and L-type VSCCs rather than N-type VSCC. These results suggest that ZNS-activated N-type VSCC enhances IP3R-associated neurotransmitter release during resting stage, whereas ZNS-induced suppression of P- and L-type VSCCs possibly attenuates IP3R-associated neurotransmitter release during neuronal hyperexcitability. Therefore, the combination of both of these two actions of ZNS on IP3R-associated neurotransmitter release mechanism seems to be involved, at least in part, in the mechanisms of antiepileptic and neuroprotective actions of ZNS.

Collaboration


Dive into the Satoshi Yamamura's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge