Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Satu Hyvärinen is active.

Publication


Featured researches published by Satu Hyvärinen.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Dual interaction of factor H with C3d and glycosaminoglycans in host-nonhost discrimination by complement.

Tommi Kajander; Markus J. Lehtinen; Satu Hyvärinen; Arnab Bhattacharjee; Elisa Leung; David E. Isenman; Seppo Meri; Adrian Goldman; T. Sakari Jokiranta

The alternative pathway of complement is important in innate immunity, attacking not only microbes but all unprotected biological surfaces through powerful amplification. It is unresolved how host and nonhost surfaces are distinguished at the molecular level, but key components are domains 19–20 of the complement regulator factor H (FH), which interact with host (i.e., nonactivator surface glycosaminoglycans or sialic acids) and the C3d part of C3b. Our structure of the FH19–20:C3d complex at 2.3-Å resolution shows that FH19–20 has two distinct binding sites, FH19 and FH20, for C3b. We show simultaneous binding of FH19 to C3b and FH20 to nonactivator surface glycosaminoglycans, and we show that both of these interactions are necessary for full binding of FH to C3b on nonactivator surfaces (i.e., for target discrimination). We also show that C3d could replace glycosaminoglycan binding to FH20, thus providing a feedback control for preventing excess C3b deposition and complement amplification. This explains the molecular basis of atypical hemolytic uremic syndrome, where mutations on the binding interfaces between FH19–20 and C3d or between FH20 and glycosaminoglycans lead to complement attack against host surfaces.


Journal of Immunology | 2012

Overall Neutralization of Complement Factor H by Autoantibodies in the Acute Phase of the Autoimmune Form of Atypical Hemolytic Uremic Syndrome

Caroline Blanc; Lubka T. Roumenina; Yahya Ashraf; Satu Hyvärinen; Sidharth Kumar Sethi; Bruno Ranchin; Patrick Niaudet; Chantal Loirat; Ashima Gulati; Arvind Bagga; Wolf H. Fridman; T. Sakari Jokiranta; Véronique Frémeaux-Bacchi; Marie-Agnès Dragon-Durey

Complement is a major innate immune surveillance system. One of its most important regulators is the plasma protein factor H (FH). FH inactivation by mutations or by autoantibodies is associated with a thrombotic microangiopathy disease, atypical hemolytic uremic syndrome. In this study, we report the characterization of blood samples from 19 anti-FH Ab-positive atypical hemolytic uremic syndrome patients collected at the acute phase of the disease. Analyses of the functional consequences and epitope mapping, using both fluid phase and solid phase approaches, were performed. The anti-FH Abs perturbed FH-mediated cell protection (100%), inhibited FH interaction with C3 (46%), and caused C3 consumption (47%). The Abs were directed against multiple FH epitopes located at the N and C termini. In all tested patients, high titers of FH-containing circulating immune complexes were detected. The circulating immune complex titers correlated with the disease stage better than did the Ab titers. Our results show that anti-FH autoantibodies induce neutralization of FH at acute phase of the disease, leading to an overall impairment of several functions of FH, extending the role of autoantibodies beyond the impairment of the direct cell surface protection.


PLOS Pathogens | 2013

Microbes Bind Complement Inhibitor Factor H via a Common Site

Taru Meri; Hanne Amdahl; Markus J. Lehtinen; Satu Hyvärinen; J. V. McDowell; Arnab Bhattacharjee; Seppo Meri; Richard T. Marconi; Adrian Goldman; T.S. Jokiranta

To cause infections microbes need to evade host defense systems, one of these being the evolutionarily old and important arm of innate immunity, the alternative pathway of complement. It can attack all kinds of targets and is tightly controlled in plasma and on host cells by plasma complement regulator factor H (FH). FH binds simultaneously to host cell surface structures such as heparin or glycosaminoglycans via domain 20 and to the main complement opsonin C3b via domain 19. Many pathogenic microbes protect themselves from complement by recruiting host FH. We analyzed how and why different microbes bind FH via domains 19–20 (FH19-20). We used a selection of FH19-20 point mutants to reveal the binding sites of several microbial proteins and whole microbes (Haemophilus influenzae, Bordetella pertussis, Pseudomonas aeruginosa, Streptococcus pneumonia, Candida albicans, Borrelia burgdorferi, and Borrelia hermsii). We show that all studied microbes use the same binding region located on one side of domain 20. Binding of FH to the microbial proteins was inhibited with heparin showing that the common microbial binding site overlaps with the heparin site needed for efficient binding of FH to host cells. Surprisingly, the microbial proteins enhanced binding of FH19-20 to C3b and down-regulation of complement activation. We show that this is caused by formation of a tripartite complex between the microbial protein, FH, and C3b. In this study we reveal that seven microbes representing different phyla utilize a common binding site on the domain 20 of FH for complement evasion. Binding via this site not only mimics the glycosaminoglycans of the host cells, but also enhances function of FH on the microbial surfaces via the novel mechanism of tripartite complex formation. This is a unique example of convergent evolution resulting in enhanced immune evasion of important pathogens via utilization of a “superevasion site.”


Journal of Immunology | 2013

An Engineered Construct Combining Complement Regulatory and Surface-Recognition Domains Represents a Minimal-Size Functional Factor H

Mario Hebecker; María Alba-Domínguez; Lubka T. Roumenina; Stefanie Reuter; Satu Hyvärinen; Marie-Agnès Dragon-Durey; T. Sakari Jokiranta; Pilar Sánchez-Corral; Mihály Józsi

Complement is an essential humoral component of innate immunity; however, its inappropriate activation leads to pathology. Polymorphisms, mutations, and autoantibodies affecting factor H (FH), a major regulator of the alternative complement pathway, are associated with various diseases, including age-related macular degeneration, atypical hemolytic uremic syndrome, and C3 glomerulopathies. Restoring FH function could be a treatment option for such pathologies. In this article, we report on an engineered FH construct that directly combines the two major functional regions of FH: the N-terminal complement regulatory domains and the C-terminal surface-recognition domains. This minimal-size FH (mini-FH) binds C3b and has complement regulatory functions similar to those of the full-length protein. In addition, we demonstrate that mini-FH binds to the FH ligands C-reactive protein, pentraxin 3, and malondialdehyde epitopes. Mini-FH was functionally active when bound to the extracellular matrix and endothelial cells in vitro, and it inhibited C3 deposition on the cells. Furthermore, mini-FH efficiently inhibited complement-mediated lysis of host-like cells caused by a disease-associated FH mutation or by anti-FH autoantibodies. Therefore, mini-FH could potentially be used as a complement inhibitor targeting host surfaces, as well as to replace compromised FH in diseases associated with FH dysfunction.


Journal of Biological Chemistry | 2015

The Major Autoantibody Epitope on Factor H in Atypical Hemolytic Uremic Syndrome Is Structurally Different from Its Homologous Site in Factor H-related Protein 1, Supporting a Novel Model for Induction of Autoimmunity in This Disease.

Arnab Bhattacharjee; Stefanie Reuter; Eszter Trojnár; Robert Kolodziejczyk; Harald Seeberger; Satu Hyvärinen; Barbara Uzonyi; Ágnes Szilágyi; Zoltán Prohászka; Adrian Goldman; Mihály Józsi; T.S. Jokiranta

Background: It is unknown why patients with autoantibodies against complement factor H (CFH) lack homologous CFHR1 protein. Results: The autoantibody epitope on CFH was identified, and the structure of the corresponding part of CFHR1 was solved. Conclusion: The autoantigenic epitope of CFH and its homologous site in CFHR1 are structurally different. Significance: A plausible explanation for formation of autoantibodies due to CFHR1 deficiency in autoimmune atypical hemolytic uremic syndrome was obtained. Atypical hemolytic uremic syndrome (aHUS) is characterized by complement attack against host cells due to mutations in complement proteins or autoantibodies against complement factor H (CFH). It is unknown why nearly all patients with autoimmune aHUS lack CFHR1 (CFH-related protein-1). These patients have autoantibodies against CFH domains 19 and 20 (CFH19–20), which are nearly identical to CFHR1 domains 4 and 5 (CFHR14–5). Here, binding site mapping of autoantibodies from 17 patients using mutant CFH19–20 constructs revealed an autoantibody epitope cluster within a loop on domain 20, next to the two buried residues that are different in CFH19–20 and CFHR14–5. The crystal structure of CFHR14–5 revealed a difference in conformation of the autoantigenic loop in the C-terminal domains of CFH and CFHR1, explaining the variation in binding of autoantibodies from some aHUS patients to CFH19–20 and CFHR14–5. The autoantigenic loop on CFH seems to be generally flexible, as its conformation in previously published structures of CFH19–20 bound to the microbial protein OspE and a sialic acid glycan is somewhat altered. Cumulatively, our data suggest that association of CFHR1 deficiency with autoimmune aHUS could be due to the structural difference between CFHR1 and the autoantigenic CFH epitope, suggesting a novel explanation for CFHR1 deficiency in the pathogenesis of autoimmune aHUS.


Blood | 2016

Disturbed sialic acid recognition on endothelial cells and platelets in complement attack causes atypical hemolytic uremic syndrome

Satu Hyvärinen; Seppo Meri; T.S. Jokiranta

Uncontrolled activation of the complement system against endothelial and blood cells is central to the pathogenesis of atypical hemolytic uremic syndrome (aHUS). aHUS patients frequently carry mutations in the inhibitory complement regulator factor H (FH). Mutations cluster in domains 19 and 20 (FH19-20), which are critical for recognizing self surfaces. On endothelial cells, binding of FH is generally attributed to heparan sulfate. This theory, however, is questioned by the puzzling observation that some aHUS-associated mutations markedly enhance FH binding to heparin and endothelial cells. In this article, we show that, instead of disturbed heparin interactions, the impaired ability of C-terminal mutant FH molecules to recognize sialic acid in the context of surface-bound C3b explains their pathogenicity. By using recombinant FH19-20 as a competitor for FH and measuring erythrocyte lysis and deposition of complement C3b and C5b-9 on endothelial cells and platelets, we now show that several aHUS-associated mutations, which have been predicted to impair FH19-20 binding to sialic acid, prevent FH19-20 from antagonizing FH function on cells. When sialic acid was removed, the wild-type FH19-20 also lost its ability to interfere with FH function on cells. These results indicate that sialic acid is critical for FH-mediated complement regulation on erythrocytes, endothelial cells, and platelets. The inability of C-terminal mutant FH molecules to simultaneously bind sialic acid and C3b on cells provides a unifying explanation for their association with aHUS. Proper formation of FH-sialic acid-C3b complexes on surfaces exposed to plasma is essential for preventing cell damage and thrombogenesis characteristic of aHUS.


Journal of Biological Chemistry | 2014

Recognition of Malondialdehyde-modified Proteins by the C Terminus of Complement Factor H Is Mediated via the Polyanion Binding Site and Impaired by Mutations Found in Atypical Hemolytic Uremic Syndrome

Satu Hyvärinen; Koji Uchida; Markku Varjosalo; Reija Jokela; T. Sakari Jokiranta

Background: Malondialdehyde (MDA) released during oxidative stress modifies proteins covalently. Results: The C terminus of complement regulator factor H binds negative patches on MDA-modified proteins, and aHUS-related mutations affect the interaction. Conclusion: Defects in factor H binding to MDA-modified surfaces might allow deleterious complement activation on them. Significance: MDA-modifications are potentially a new factor in aHUS pathogenesis. Atypical hemolytic uremic syndrome (aHUS) is a severe thrombotic microangiopathy characterized by uncontrolled complement activation against endothelial and blood cells. Mutations in the C-terminal target recognition domains 19–20 of complement regulator factor H (FH) are strongly associated with aHUS, but the mechanisms triggering disease onset have remained unresolved. Here we report that several aHUS-related mutations alter the binding of FH19–20 to proteins where lysines have reacted with malondialdehyde (MDA). Although FH19–20 did not interact with MDA-modified hexylamine, lysine-containing peptides, or a proteolytically degraded protein, it bound to MDA-modified polylysine. This suggests that FH19–20 recognizes only clustered MDA adducts. Binding of MDA-modified BSA to FH19–20 was ionic by nature, depended on positive residues of FH19–20, and competed with the polyanions heparin and DNA. This could not be explained with the mainly neutral adducts known to form in MDA modification. When positive charges of lysines were eliminated by acetic anhydride instead of MDA, the acetylated BSA started to bind FH19–20. Together, these results indicate that negative charges on the modified proteins dominate the interaction with FH19–20. This is beneficial for the physiological function of FH because by binding to the negative charges of the modified target, FH could prevent excess complement activation initiated by naturally occurring antibodies recognizing MDA epitopes with multiple different structures. We propose that oxidative stress leading to formation of MDA adducts is a common feature for triggers of aHUS and that failure of FH in protecting MDA-modified surfaces from complement activation is involved in the pathogenesis of the disease.


Journal of Immunology | 2013

Staphylococcal Ecb Protein and Host Complement Regulator Factor H Enhance Functions of Each Other in Bacterial Immune Evasion

Hanne Amdahl; Ilse Jongerius; Taru Meri; Tanja Pasanen; Satu Hyvärinen; Karita Haapasalo; Jos A. G. van Strijp; Suzan H.M. Rooijakkers; T. Sakari Jokiranta

Staphylococcus aureus is a major human pathogen causing more than a tenth of all septicemia cases and often superficial and deep infections in various tissues. One of the immune evasion strategies of S. aureus is to secrete proteins that bind to the central complement opsonin C3b. One of these, extracellular complement binding protein (Ecb), is known to interfere directly with functions of C3b. Because C3b is also the target of the physiological plasma complement regulator, factor H (FH), we studied the effect of Ecb on the complement regulatory functions of FH. We show that Ecb enhances acquisition of FH from serum onto staphylococcal surfaces. Ecb and FH enhance mutual binding to C3b and also the function of each other in downregulating complement activation. Both Ecb and the C-terminal domains 19–20 of FH bind to the C3d part of C3b. We show that the mutual enhancing effect of Ecb and FH on binding to C3b depends on binding of the FH domain 19 to the C3d part of C3b next to the binding site of Ecb on C3d. Our results show that Ecb, FH, and C3b form a tripartite complex. Upon exposure of serum-sensitive Haemophilus influenzae to human serum, Ecb protected the bacteria, and this effect was enhanced by the addition of the C-terminal domains 19–20 of FH. This finding indicates that the tripartite complex formation could give additional protection to bacteria and that S. aureus is thereby able to use host FH and bacterial Ecb in a concerted action to eliminate C3b at the site of infection.


Molecular Immunology | 2016

Heterogeneity but individual constancy of epitopes, isotypes and avidity of factor H autoantibodies in atypical hemolytic uremic syndrome

Pilar Nozal; María E Bernabeu-Herrero; Barbara Uzonyi; Ágnes Szilágyi; Satu Hyvärinen; Zoltán Prohászka; T. Sakari Jokiranta; Pilar Sánchez-Corral; Margarita López-Trascasa; Mihály Józsi

Factor H (FH) autoantibodies are present in 6-10% of atypical hemolytic uremic syndrome (aHUS) patients, most of whom have homozygous deficiency of the FH-related protein FHR-1. Although the pathogenic role of the autoantibodies is established, little is known about their molecular characteristics and changes over time. Here, we describe the specificity and other immunological features of anti-FH autoantibodies in the Spanish and Hungarian aHUS cohorts. A total of 19 patients were included and serial samples of 14 of them were available. FH autoantibodies from FHR-1 deficient patients (n=13) mainly recognized FH, its SCR19-20 fragment and FHR-1, but autoantibody specificity in patients who are homo- or heterozygous for the CFHR1 gene (n=6) was heterogeneous. No significant changes apart from total antibody titer were observed during follow-up in each patient. Fine epitope mapping with recombinant FH SCR19-20 containing single amino acid mutations showed significantly reduced binding in 6 out of 14 patients. In most cases, autoantibody binding to residues 1183-1189 and 1210-1215 was impaired, revealing a major common autoantibody epitope. Avidities showed variations between patients, but in most cases the avidity index did not change upon time. Most autoantibodies were IgG3, and all but three presented only with kappa or with lambda light chains. Although the pathogenic role of anti-FH autoantibodies in aHUS is well established, this study shows autoantibody heterogeneity among patients, but no significant variation in their characteristics over time in each patient. The presence of a single light chain in 16 out of 19 patients and the limited number of recognized epitopes suggest a restricted autoantibody response in most patients.


PLOS ONE | 2015

Minor Role of Plasminogen in Complement Activation on Cell Surfaces.

Satu Hyvärinen; T. Sakari Jokiranta

Atypical hemolytic uremic syndrome (aHUS) is a rare, but severe thrombotic microangiopathy. In roughly two thirds of the patients, mutations in complement genes lead to uncontrolled activation of the complement system against self cells. Recently, aHUS patients were described with deficiency of the fibrinolytic protein plasminogen. This zymogen and its protease form plasmin have both been shown to interact with complement proteins in the fluid phase. In this work we studied the potential of plasminogen to restrict complement propagation. In hemolytic assays, plasminogen inhibited complement activation, but only when it had been exogenously activated to plasmin and when it was used at disproportionately high concentrations compared to serum. Addition of only the zymogen plasminogen into serum did not hinder complement-mediated lysis of erythrocytes. Plasminogen could not restrict deposition of complement activation products on endothelial cells either, as was shown with flow cytometry. With platelets, a very weak inhibitory effect on deposition of C3 fragments was observed, but it was considered too weak to be significant for disease pathogenesis. Thus it was concluded that plasminogen is not an important regulator of complement on self cells. Instead, addition of plasminogen was shown to clearly hinder platelet aggregation in serum. This was attributed to plasmin causing disintegration of formed platelet aggregates. We propose that reduced proteolytic activity of plasmin on structures of growing thrombi, rather than on complement activation fragments, explains the association of plasminogen deficiency with aHUS. This adds to the emerging view that factors unrelated to the complement system can also be central to aHUS pathogenesis and suggests that future research on the mechanism of the disease should expand beyond complement dysregulation.

Collaboration


Dive into the Satu Hyvärinen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mihály Józsi

Eötvös Loránd University

View shared research outputs
Top Co-Authors

Avatar

Seppo Meri

University of Helsinki

View shared research outputs
Top Co-Authors

Avatar

Taru Meri

University of Helsinki

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pilar Sánchez-Corral

Hospital Universitario La Paz

View shared research outputs
Researchain Logo
Decentralizing Knowledge