Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where T. Sakari Jokiranta is active.

Publication


Featured researches published by T. Sakari Jokiranta.


Nature Genetics | 2000

Mutations in an oocyte-derived growth factor gene ( BMP15 ) cause increased ovulation rate and infertility in a dosage-sensitive manner

Susan M. Galloway; Kenneth P. McNatty; Lisa Cambridge; Mika Laitinen; Jennifer L. Juengel; T. Sakari Jokiranta; Robert J. McLaren; Kaisu Luiro; K. G. Dodds; Grant W. Montgomery; Anne E. Beattie; George H. Davis; Olli Ritvos

Multiple ovulations are uncommon in humans, cattle and many breeds of sheep. Pituitary gonadotrophins and as yet unidentified ovarian factors precisely regulate follicular development so that, normally, only one follicle is selected to ovulate. The Inverdale (FecXI) sheep, however, carries a naturally occurring X-linked mutation that causes increased ovulation rate and twin and triplet births in heterozygotes (FecXI/FecX+; ref. 1), but primary ovarian failure in homozygotes (FecXI/FecXI; ref. 2). Germ-cell development, formation of the follicle and the earliest stages of follicular growth are normal in FecXI/FecXI sheep, but follicular development beyond the primary stage is impaired. A second family unrelated to the Inverdale sheep also has the same X-linked phenotype (Hanna, FecXH). Crossing FecXI with FecXH animals produces FecXI/FecXH infertile females phenotypically indistinguishable from FecXI/FecXI females. We report here that the FecXI locus maps to an orthologous chromosomal region syntenic to human Xp11.2–11.4, which contains BMP15, encoding bone morphogenetic protein 15 (also known as growth differentiation factor 9B (GDF9B)). Whereas BMP15 is a member of the transforming growth factor β (TGFβ) superfamily and is specifically expressed in oocytes, its function is unknown. We show that independent germline point mutations exist in FecXI and FecXH carriers. These findings establish that BMP15 is essential for female fertility and that natural mutations in an ovary-derived factor can cause both increased ovulation rate and infertility phenotypes in a dosage-sensitive manner.


Journal of Immunology | 2007

Y402H Polymorphism of Complement Factor H Affects Binding Affinity to C-Reactive Protein

M.T. Laine; Hanna Jarva; Sanna Seitsonen; Karita Haapasalo; Markus J. Lehtinen; Nina Lindeman; Don H. Anderson; P.T. Johnson; Irma Järvelä; T. Sakari Jokiranta; Gregory S. Hageman; Ilkka Immonen; Seppo Meri

Complement factor H (FH) is an important regulator of the alternative complement pathway. The Y402H polymorphism within the seventh short consensus repeat of FH was recently shown to be associated with age-related macular degeneration, the most common cause of irreversible blindness in the Western world. We examined the effects of this polymorphism on various FH functions. FH purified from sera of age-related macular degeneration patients homozygous for the FH402H variant showed a significantly reduced binding to C-reactive protein (CRP), an acute phase protein, as compared with FH derived from unaffected controls homozygous for the FH402Y variant. Strongly reduced binding to CRP was also observed with a recombinant fragment of FH (short consensus repeat 5–7) containing the same amino acid change. Because the interaction of CRP and FH promotes complement-mediated clearance of cellular debris in a noninflammatory fashion, we propose that the reduced binding of FH402H to CRP could lead to an impaired targeting of FH to cellular debris and a reduction in debris clearance and enhanced inflammation along the macular retinal pigmented epithelium-choroid interface in individuals with age-related macular degeneration.


Immunopharmacology | 1999

The factor H protein family.

Peter F. Zipfel; T. Sakari Jokiranta; Jens Hellwage; Vesa Koistinen; Seppo Meri

The factor H gene family provides a prime example of a multidomain multifunctional protein family whose individual members are defined by conserved common structural elements and display diverse but often overlapping functions. The six identified members of this protein family represent secreted plasma proteins that are primarily synthesized in the liver. Here, we summarize the current understanding of the function of these proteins and suggest a common role in complement control. Factor H is the best characterized member and acts as a complement regulator. The protein displays cofactor activity for factor I in the degradation of the central complement component C3b, acts as a decay accelerating factor for the C3 convertase, C3bBb and is a competitor for factor B binding to C3b. Factor H is a multifunctional protein and displays functions outside the complement system: it binds to the cellular integrin receptor (CD11b/CD18), interacts with cell surface glycosaminoglycans and also binds to the surface of certain pathogenic microorganisms. In addition, factor H has several binding sites for the C3 protein. The factor H-like protein 1 (FHL-1) or reconectin shares the complement regulatory functions with factor H and interacts with heparin. The protein displays cell spreading activity and binds to the N-terminus of the streptococcal M protein. The function of the factor H-related proteins (FHR-1 to FHR-4) is currently under investigation. These proteins are differently distributed. Three proteins (FHR-1, FHR-2 and FHR-4) are constituents of lipoproteins, while FHR-3 interacts with heparin. Binding to C3b and C3d has been demonstrated for FHR-3 and FHR-4 and the two proteins display a cofactor related activity.


Journal of The American Society of Nephrology | 2007

New Approaches to the Treatment of Dense Deposit Disease

Richard J.H. Smith; Jessy J. Alexander; Paul N. Barlow; Marina Botto; Thomas L. Cassavant; H. Terence Cook; Santiago Rodríguez de Córdoba; Gregory S. Hageman; T. Sakari Jokiranta; William J. Kimberling; John D. Lambris; Lynne D. Lanning; Vicki Levidiotis; Christoph Licht; Hans U. Lutz; Seppo Meri; Matthew C. Pickering; Richard J. Quigg; Angelique L.W.M.M. Rops; David J. Salant; Sanjeev Sethi; Joshua M. Thurman; Hope F. Tully; Sean P. Tully; Johan van der Vlag; Patrick D. Walker; Reinhard Würzner; Peter F. Zipfel

The development of clinical treatment protocols usually relies on evidence-based guidelines that focus on randomized, controlled trials. For rare renal diseases, such stringent requirements can represent a significant challenge. Dense deposit disease (DDD; also known as membranoproliferative glomerulonephritis type II) is a prototypical rare disease. It affects only two to three people per million and leads to renal failure within 10 yr in 50% of affected children. On the basis of pathophysiology, this article presents a diagnostic and treatment algorithm for patients with DDD. Diagnostic tests should assess the alternative pathway of complement for abnormalities. Treatment options include aggressive BP control and reduction of proteinuria, and on the basis of pathophysiology, animal data, and human studies, plasma infusion or exchange, rituximab, sulodexide, and eculizumab are additional options. Criteria for treatment success should be prevention of progression as determined by maintenance or improvement in renal function. A secondary criterion should be normalization of activity levels of the alternative complement pathway as measured by C3/C3d ratios and C3NeF levels. Outcomes should be reported to a central repository that is now accessible to all clinicians. As the understanding of DDD increases, novel therapies should be integrated into existing protocols for DDD and evaluated using an open-label Bayesian study design.


Journal of Immunology | 2007

Immune Evasion of the Human Pathogen Pseudomonas aeruginosa: Elongation Factor Tuf Is a Factor H and Plasminogen Binding Protein

Anja Kunert; Josephine Losse; Christin Gruszin; Michael Hühn; Kerstin Kaendler; Stefan Mikkat; Daniela Volke; Ralf Hoffmann; T. Sakari Jokiranta; Harald Seeberger; Ute Moellmann; Jens Hellwage; Peter F. Zipfel

Pseudomonas aeruginosa is an opportunistic human pathogen that can cause a wide range of clinical symptoms and infections that are frequent in immunocompromised patients. In this study, we show that P. aeruginosa evades human complement attack by binding the human plasma regulators Factor H and Factor H-related protein-1 (FHR-1) to its surface. Factor H binds to intact bacteria via two sites that are located within short consensus repeat (SCR) domains 6–7 and 19–20, and FHR-1 binds within SCR domain 3–5. A P. aeruginosa Factor H binding protein was isolated using a Factor H affinity matrix, and was identified by mass spectrometry as the elongation factor Tuf. Factor H uses the same domains for binding to recombinant Tuf and to intact bacteria. Factor H bound to recombinant Tuf displayed cofactor activity for degradation of C3b. Similarly Factor H bound to intact P. aeruginosa showed complement regulatory activity and mediated C3b degradation. This acquired complement control was rather effective and acted in concert with endogenous proteases. Immunolocalization identified Tuf as a surface protein of P. aeruginosa. Tuf also bound plasminogen, and Tuf-bound plasminogen was converted by urokinase plasminogen activator to active plasmin. Thus, at the bacterial surface Tuf acts as a virulence factor and binds the human complement regulator Factor H and plasminogen. Acquisition of host effector proteins to the surface of the pathogen allows complement control and may facilitate tissue invasion.


Infection and Immunity | 2001

Complement Evasion by Borrelia burgdorferi: Serum-Resistant Strains Promote C3b Inactivation

Antti Alitalo; Taru Meri; Lasse Rämö; T. Sakari Jokiranta; Tero Heikkilä; Ilkka Seppälä; Jarmo Oksi; Matti K. Viljanen; Seppo Meri

ABSTRACT The most characteristic features of the Lyme disease pathogens, theBorrelia burgdorferi sensu lato (s.l.) group, are their ability to invade tissues and to circumvent the immune defenses of the host for extended periods of time, despite elevated levels of borrelia-specific antibodies in serum and other body fluids. Our aim in the present study was to determine whether B. burgdorferi is able to interfere with complement (C) at the level of C3 by accelerating C3b inactivation and thus to inhibit the amplification of the C cascade. Strains belonging to different genospecies (Borrelia garinii, B. burgdorferi sensu stricto, and Borrelia afzelii) were compared for their sensitivities to normal human serum and abilities to promote factor I-mediated C3b degradation. B. burgdorferi sensu stricto and B. afzelii strains were found to be serum resistant. When the spirochetes were incubated with radiolabeled C3b, factor I-mediated degradation of C3b was observed in the presence of C-resistant B. afzelii(n = 3) and B. burgdorferi sensu stricto (n = 1) strains but not in the presence of C-sensitive B. garinii (n = 7) strains or control bacteria (Escherichia coli,Staphylococcus aureus, and Enterococcus faecalis). Immunoblotting and radioligand binding analyses showed that the C-resistant strains had the capacity to acquire the C inhibitors factor H and factor H-like protein 1 (FHL-1) from growth medium and human serum. A novel surface protein with an apparent molecular mass of 35 kDa was found to preferentially bind to the N terminus region of factor H. Thus, the serum-resistant B. burgdorferi s.l. strains can circumvent C attack by binding the C inhibitors factor H and FHL-1 to their surfaces and promoting factor I-mediated C3b degradation.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Dual interaction of factor H with C3d and glycosaminoglycans in host-nonhost discrimination by complement.

Tommi Kajander; Markus J. Lehtinen; Satu Hyvärinen; Arnab Bhattacharjee; Elisa Leung; David E. Isenman; Seppo Meri; Adrian Goldman; T. Sakari Jokiranta

The alternative pathway of complement is important in innate immunity, attacking not only microbes but all unprotected biological surfaces through powerful amplification. It is unresolved how host and nonhost surfaces are distinguished at the molecular level, but key components are domains 19–20 of the complement regulator factor H (FH), which interact with host (i.e., nonactivator surface glycosaminoglycans or sialic acids) and the C3d part of C3b. Our structure of the FH19–20:C3d complex at 2.3-Å resolution shows that FH19–20 has two distinct binding sites, FH19 and FH20, for C3b. We show simultaneous binding of FH19 to C3b and FH20 to nonactivator surface glycosaminoglycans, and we show that both of these interactions are necessary for full binding of FH to C3b on nonactivator surfaces (i.e., for target discrimination). We also show that C3d could replace glycosaminoglycan binding to FH20, thus providing a feedback control for preventing excess C3b deposition and complement amplification. This explains the molecular basis of atypical hemolytic uremic syndrome, where mutations on the binding interfaces between FH19–20 and C3d or between FH20 and glycosaminoglycans lead to complement attack against host surfaces.


The EMBO Journal | 2006

Structure of complement factor H carboxyl-terminus reveals molecular basis of atypical haemolytic uremic syndrome.

T. Sakari Jokiranta; Veli-Pekka Jaakola; Markus J. Lehtinen; Maria Pärepalo; Seppo Meri; Adrian Goldman

Factor H (FH) is the key regulator of the alternative pathway of complement. The carboxyl‐terminal domains 19–20 of FH interact with the major opsonin C3b, glycosaminoglycans, and endothelial cells. Mutations within this area are associated with atypical haemolytic uremic syndrome (aHUS), a disease characterized by damage to endothelial cells, erythrocytes, and kidney glomeruli. The structure of recombinant FH19–20, solved at 1.8 Å by X‐ray crystallography, reveals that the short consensus repeat domain 20 contains, unusually, a short α‐helix, and a patch of basic residues at its base. Most aHUS‐associated mutations either destabilize the structure or cluster in a unique region on the surface of FH20. This region is close to, but distinct from, the primary heparin‐binding patch of basic residues. By mutating five residues in this region, we show that it is involved, not in heparin, but in C3b binding. Therefore, the majority of the aHUS‐associated mutations on the surface of FH19–20 interfere with the interaction between FH and C3b. This obviously leads to impaired control of complement attack on plasma‐exposed cell surfaces in aHUS.


Journal of Immunology | 2008

Binding of the Long Pentraxin PTX3 to Factor H: Interacting Domains and Function in the Regulation of Complement Activation

Livija Deban; Hanna Jarva; Markus J. Lehtinen; Barbara Bottazzi; Antonio Bastone; Andrea Doni; T. Sakari Jokiranta; Alberto Mantovani; Seppo Meri

The long pentraxin PTX3 is a multifunctional soluble molecule involved in inflammation and innate immunity. As an acute phase protein, PTX3 binds to the classical pathway complement protein C1q, limits tissue damage in inflammatory conditions by regulating apoptotic cell clearance, and plays a role in the phagocytosis of selected pathogens. This study was designed to investigate the interaction of PTX3 with factor H (FH), the main soluble alternative pathway regulatory protein. We report that PTX3 binds FH with an apparent Kd of 1.1 × 10−7 M, and define two binding sites for PTX3 on FH. The primary binding site is located on FH domains 19–20, which interact with the N-terminal domain of PTX3, while a secondary binding site on domain 7 binds the glycosylated PTX3 pentraxin domain. The FH Y402H polymorphism, which affects binding to the short pentraxin CRP, did not affect binding to PTX3. Surface-bound PTX3 enhances FH recruitment and iC3b deposition and PTX3-bound FH retains its activity as a cofactor for factor I-mediated C3b cleavage. Thus, our findings identify PTX3 as a unique FH ligand in that it can bind both of the two hot-spots of FH, namely SCR7 and SCR19–20 and indicate that PTX3 participates in the localization of functionally active FH.


Clinical Infectious Diseases | 2011

Review of cases with the emerging fifth human malaria parasite, Plasmodium knowlesi.

Anu Kantele; T. Sakari Jokiranta

Human malaria has been known to be caused by 4 Plasmodium species, with Plasmodium falciparum causing the most-severe disease. Recently, numerous reports have described human malaria caused by a fifth Plasmodium species, Plasmodium knowlesi, which usually infects macaque monkeys. Hundreds of human cases have been reported from Malaysia, several cases have been reported in other Southeast Asian countries, and a few cases have been reported in travelers visiting these areas. Similarly to P. falciparum, P. knowlesi can cause severe and even fatal cases of disease that are more severe than those caused by the other Plasmodium species. Polymerase chain reaction is of value for diagnosis because P. knowlesi infection is easily misdiagnosed as less dangerous Plasmodium malariae infection with conventional microscopy. P. knowlesi infection should be suspected in patients who are infected with malaria in Southeast Asia. If human-mosquito-human transmission were to occur, the disease could spread to new areas where the mosquito vectors live, such as the popular tourist areas in western India.

Collaboration


Dive into the T. Sakari Jokiranta's collaboration.

Top Co-Authors

Avatar

Seppo Meri

University of Helsinki

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Taru Meri

University of Helsinki

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mihály Józsi

Eötvös Loránd University

View shared research outputs
Top Co-Authors

Avatar

Hanna Jarva

University of Helsinki

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge