Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Satya Kuchimanchi is active.

Publication


Featured researches published by Satya Kuchimanchi.


Journal of the American Chemical Society | 2014

Multivalent N‑Acetylgalactosamine-Conjugated siRNA Localizes in Hepatocytes and Elicits Robust RNAi-Mediated Gene Silencing

Jayaprakash K. Nair; Jennifer L. S. Willoughby; Amy Chan; Klaus Charisse; Md. Rowshon Alam; Qianfan Wang; Menno Hoekstra; Pachamuthu Kandasamy; Alexander V. Kel’in; Nate Taneja; Jonathan O′Shea; Sarfraz Shaikh; Ligang Zhang; Ronald J. van der Sluis; Michael E. Jung; Akin Akinc; Renta Hutabarat; Satya Kuchimanchi; Kevin Fitzgerald; Tracy Zimmermann; Theo J.C. van Berkel; Martin Maier; Kallanthottathil G. Rajeev; Muthiah Manoharan

Conjugation of small interfering RNA (siRNA) to an asialoglycoprotein receptor ligand derived from N-acetylgalactosamine (GalNAc) facilitates targeted delivery of the siRNA to hepatocytes in vitro and in vivo. The ligands derived from GalNAc are compatible with solid-phase oligonucleotide synthesis and deprotection conditions, with synthesis yields comparable to those of standard oligonucleotides. Subcutaneous (SC) administration of siRNA-GalNAc conjugates resulted in robust RNAi-mediated gene silencing in liver. Refinement of the siRNA chemistry achieved a 5-fold improvement in efficacy over the parent design in vivo with a median effective dose (ED50) of 1 mg/kg following a single dose. This enabled the SC administration of siRNA-GalNAc conjugates at therapeutically relevant doses and, importantly, at dose volumes of ≤1 mL. Chronic weekly dosing resulted in sustained dose-dependent gene silencing for over 9 months with no adverse effects in rodents. The optimally chemically modified siRNA-GalNAc conjugates are hepatotropic and long-acting and have the potential to treat a wide range of diseases involving liver-expressed genes.


PLOS ONE | 2013

MICU2, a Paralog of MICU1, Resides within the Mitochondrial Uniporter Complex to Regulate Calcium Handling

Molly Plovanich; Roman L. Bogorad; Yasemin Sancak; Kimberli J. Kamer; Laura Strittmatter; Andrew Amos Li; Hany S. Girgis; Satya Kuchimanchi; Jack De Groot; Nathan Taneja; Jonathan O'Shea; Victor Koteliansky; Vamsi K. Mootha

Mitochondrial calcium uptake is present in nearly all vertebrate tissues and is believed to be critical in shaping calcium signaling, regulating ATP synthesis and controlling cell death. Calcium uptake occurs through a channel called the uniporter that resides in the inner mitochondrial membrane. Recently, we used comparative genomics to identify MICU1 and MCU as the key regulatory and putative pore-forming subunits of this channel, respectively. Using bioinformatics, we now report that the human genome encodes two additional paralogs of MICU1, which we call MICU2 and MICU3, each of which likely arose by gene duplication and exhibits distinct patterns of organ expression. We demonstrate that MICU1 and MICU2 are expressed in HeLa and HEK293T cells, and provide multiple lines of biochemical evidence that MCU, MICU1 and MICU2 reside within a complex and cross-stabilize each others protein expression in a cell-type dependent manner. Using in vivo RNAi technology to silence MICU1, MICU2 or both proteins in mouse liver, we observe an additive impairment in calcium handling without adversely impacting mitochondrial respiration or membrane potential. The results identify MICU2 as a new component of the uniporter complex that may contribute to the tissue-specific regulation of this channel.


Nature | 2012

Rab5 is necessary for the biogenesis of the endolysosomal system in vivo

Anja Zeigerer; Jerome Gilleron; Roman L. Bogorad; Giovanni Marsico; Hidenori Nonaka; Sarah Seifert; Hila Epstein-Barash; Satya Kuchimanchi; Chang Geng Peng; Vera M. Ruda; Perla Del Conte-Zerial; Jan G. Hengstler; Yannis Kalaidzidis; Victor Koteliansky; Marino Zerial

An outstanding question is how cells control the number and size of membrane organelles. The small GTPase Rab5 has been proposed to be a master regulator of endosome biogenesis. Here, to test this hypothesis, we developed a mathematical model of endosome dependency on Rab5 and validated it by titrating down all three Rab5 isoforms in adult mouse liver using state-of-the-art RNA interference technology. Unexpectedly, the endocytic system was resilient to depletion of Rab5 and collapsed only when Rab5 decreased to a critical level. Loss of Rab5 below this threshold caused a marked reduction in the number of early endosomes, late endosomes and lysosomes, associated with a block of low-density lipoprotein endocytosis. Loss of endosomes caused failure to deliver apical proteins to the bile canaliculi, suggesting a requirement for polarized cargo sorting. Our results demonstrate for the first time, to our knowledge, the role of Rab5 as an endosome organizer in vivo and reveal the resilience mechanisms of the endocytic system.


Nature Medicine | 2015

An RNAi therapeutic targeting antithrombin to rebalance the coagulation system and promote hemostasis in hemophilia

Alfica Sehgal; Scott Barros; Lacramioara Ivanciu; Brian C. Cooley; June Qin; Tim Racie; Julia Hettinger; Mary Carioto; Yongfeng Jiang; Josh Brodsky; Harsha Prabhala; Xuemei Zhang; Husain Attarwala; Renta Hutabarat; Don Foster; Klaus Charisse; Satya Kuchimanchi; Martin Maier; Lubo Nechev; Pachamuthu Kandasamy; Alexander V. Kelin; Jayaprakash K. Nair; Kallanthottathil G. Rajeev; Muthiah Manoharan; Rachel Meyers; Benny Sorensen; Amy Simon; Yesim Dargaud; Claude Negrier; Rodney M. Camire

Hemophilia A and B are inherited bleeding disorders characterized by deficiencies in procoagulant factor VIII (FVIII) or factor IX (FIX), respectively. There remains a substantial unmet medical need in hemophilia, especially in patients with inhibitory antibodies against replacement factor therapy, for novel and improved therapeutic agents that can be used prophylactically to provide effective hemostasis. Guided by reports suggesting that co-inheritance of prothrombotic mutations may ameliorate the clinical phenotype in hemophilia, we developed an RNA interference (RNAi) therapeutic (ALN-AT3) targeting antithrombin (AT) as a means to promote hemostasis in hemophilia. When administered subcutaneously, ALN-AT3 showed potent, dose-dependent, and durable reduction of AT levels in wild-type mice, mice with hemophilia A, and nonhuman primates (NHPs). In NHPs, a 50% reduction in AT levels was achieved with weekly dosing at approximately 0.125 mg/kg, and a near-complete reduction in AT levels was achieved with weekly dosing at 1.5 mg/kg. Treatment with ALN-AT3 promoted hemostasis in mouse models of hemophilia and led to improved thrombin generation in an NHP model of hemophilia A with anti-factor VIII inhibitors. This investigational compound is currently in phase 1 clinical testing in subjects with hemophilia A or B.


Nucleic Acids Research | 2013

Promoter RNA links transcriptional regulation of inflammatory pathway genes

Masayuki Matsui; Yongjun Chu; Huiying Zhang; Keith T. Gagnon; Sarfraz Shaikh; Satya Kuchimanchi; Muthiah Manoharan; David R. Corey; Bethany A. Janowski

Although many long non-coding RNAs (lncRNAs) have been discovered, their function and their association with RNAi factors in the nucleus have remained obscure. Here, we identify RNA transcripts that overlap the cyclooxygenase-2 (COX-2) promoter and contain two adjacent binding sites for an endogenous miRNA, miR-589. We find that miR-589 binds the promoter RNA and activates COX-2 transcription. In addition to miR-589, fully complementary duplex RNAs that target the COX-2 promoter transcript activate COX-2 transcription. Activation by small RNA requires RNAi factors argonaute-2 (AGO2) and GW182, but does not require AGO2-mediated cleavage of the promoter RNA. Instead, the promoter RNA functions as a scaffold. Binding of AGO2 protein/small RNA complexes to the promoter RNA triggers gene activation. Gene looping allows interactions between the promoters of COX-2 and phospholipase A2 (PLA2G4A), an adjacent pro-inflammatory pathway gene that produces arachidonic acid, the substrate for COX-2 protein. miR-589 and fully complementary small RNAs regulate both COX-2 and PLA2G4A gene expression, revealing an unexpected connection between key steps of the eicosanoid signaling pathway. The work demonstrates the potential for RNA to coordinate locus-dependent assembly of related genes to form functional operons through cis-looping.


Blood | 2012

Treatment of erythropoietin deficiency in mice with systemically administered siRNA

William Querbes; Roman L. Bogorad; Javid Moslehi; Jamie Wong; Amy Chan; Elena Bulgakova; Satya Kuchimanchi; Akin Akinc; Kevin Fitzgerald; Victor Koteliansky; William G. Kaelin

Anemia linked to a relative deficiency of renal erythropoietin production is a significant cause of morbidity and medical expenditures in the developed world. Recombinant erythropoietin is expensive and has been linked to excess cardiovascular events. Moreover, some patients become refractory to erythropoietin because of increased production of factors such as hepcidin. During fetal life, the liver, rather than the kidney, is the major source of erythropoietin. In the present study, we show that it is feasible to reactivate hepatic erythropoietin production and suppress hepcidin levels using systemically delivered siRNAs targeting the EglN prolyl hydroxylases specifically in the liver, leading to improved RBC production in models of anemia caused by either renal insufficiency or chronic inflammation with enhanced hepcidin production.


Silence | 2010

In vivo quantification of formulated and chemically modified small interfering RNA by heating-in-Triton quantitative reverse transcription polymerase chain reaction (HIT qRT-PCR)

Yosef Landesman; Nenad Svrzikapa; Armand Cognetta; Xuemei Zhang; Brian Bettencourt; Satya Kuchimanchi; Keri Dufault; Sarfraz Shaikh; Maple Gioia; Akin Akinc; Renta Hutabarat; Rachel Meyers

BackgroundWhile increasing numbers of small interfering RNA (siRNA) therapeutics enter into clinical trials, the quantification of siRNA from clinical samples for pharmacokinetic studies remains a challenge. This challenge is even more acute for the quantification of chemically modified and formulated siRNAs such as those typically required for systemic delivery.ResultsHere, we describe a novel method, heating-in-Triton quantitative reverse transcription PCR (HIT qRT-PCR) that improves upon the stem-loop RT-PCR technique for the detection of formulated and chemically modified siRNAs from plasma and tissue. The broad dynamic range of this assay spans five orders of magnitude and can detect as little as 70 pg duplex in 1 g of liver or in 1 ml of plasma. We have used this assay to quantify intravenously administrated siRNA in rodents and have reliably correlated target reduction with tissue drug concentrations. We were able to detect siRNA in rat liver for at least 10 days post injection and determined that for a modified factor VII (FVII) siRNA, on average, approximately 500 siRNA molecules per cell are required to achieve a 50% target reduction.ConclusionsHIT qRT-PCR is a novel approach that simplifies the in vivo quantification of siRNA and provides a highly sensitive and reproducible tool to measure the silencing efficiency of chemically modified and formulated siRNAs.


Nucleic Acids Research | 2013

RNA duplexes with abasic substitutions are potent and allele-selective inhibitors of huntingtin and ataxin-3 expression

Jing Liu; Hannah Pendergraff; K. Jayaprakash Narayanannair; Jeremy G. Lackey; Satya Kuchimanchi; Kallanthottathil G. Rajeev; Muthiah Manoharan; Jiaxin Hu; David R. Corey

Abasic substitutions within DNA or RNA are tools for evaluating the impact of absent nucleobases. Because of the importance of abasic sites in genetic damage, most research has involved DNA. Little information is available on the impact of abasic substitutions within RNA or on RNA interference (RNAi). Here, we examine the effect of abasic substitutions on RNAi and allele-selective gene silencing. Huntingtons disease (HD) and Machado Joseph Disease (MJD) are severe neurological disorders that currently have no cure. HD and MJD are caused by an expansion of CAG repeats within one mRNA allele encoding huntingtin (HTT) and ataxin-3 (ATX-3) proteins. Agents that silence mutant HTT or ATX-3 expression would remove the cause of HD or MJD and provide an option for therapeutic development. We describe flexible syntheses for abasic substitutions and show that abasic RNA duplexes allele-selectively inhibit both mutant HTT and mutant ATX-3. Inhibition involves the RNAi protein argonaute 2, even though the abasic substitution disrupts the catalytic cleavage of RNA target by argonaute 2. Several different abasic duplexes achieve potent and selective inhibition, providing a broad platform for subsequent development. These findings introduce abasic substitutions as a tool for tailoring RNA duplexes for gene silencing.


Molecular therapy. Nucleic acids | 2015

Preclinical Development of a Subcutaneous ALAS1 RNAi Therapeutic for Treatment of Hepatic Porphyrias Using Circulating RNA Quantification

Amy Chan; Abigail Liebow; Makiko Yasuda; Lin Gan; Tim Racie; Martin Maier; Satya Kuchimanchi; Don Foster; Klaus Charisse; Alfica Sehgal; Muthiah Manoharan; Rachel Meyers; Kevin Fitzgerald; Amy Simon; Robert J. Desnick; William Querbes

The acute hepatic porphyrias are caused by inherited enzymatic deficiencies in the heme biosynthesis pathway. Induction of the first enzyme 5-aminolevulinic acid synthase 1 (ALAS1) by triggers such as fasting or drug exposure can lead to accumulation of neurotoxic heme intermediates that cause disease symptoms. We have demonstrated that hepatic ALAS1 silencing using siRNA in a lipid nanoparticle effectively prevents and treats induced attacks in a mouse model of acute intermittent porphyria. Herein, we report the development of ALN-AS1, an investigational GalNAc-conjugated RNAi therapeutic targeting ALAS1. One challenge in advancing ALN-AS1 to patients is the inability to detect liver ALAS1 mRNA in the absence of liver biopsies. We here describe a less invasive circulating extracellular RNA detection assay to monitor RNAi drug activity in serum and urine. A striking correlation in ALAS1 mRNA was observed across liver, serum, and urine in both rodents and nonhuman primates (NHPs) following treatment with ALN-AS1. Moreover, in donor-matched human urine and serum, we demonstrate a notable correspondence in ALAS1 levels, minimal interday assay variability, low interpatient variability from serial sample collections, and the ability to distinguish between healthy volunteers and porphyria patients with induced ALAS1 levels. The collective data highlight the potential utility of this assay in the clinical development of ALN-AS1, and in broadening our understanding of acute hepatic porphyrias disease pathophysiology.


Biochemistry | 2014

Allele-Selective Inhibition of Mutant Atrophin-1 Expression by Duplex and Single-Stranded RNAs

Jiaxin Hu; Jing Liu; K. Jayaprakash Narayanannair; Jeremy G. Lackey; Satya Kuchimanchi; Kallanthottathil G. Rajeev; Muthiah Manoharan; Eric E. Swayze; Walt F. Lima; Thazha P. Prakash; Qin Xiang; Carlos Sainz Martinez; David R. Corey

Dentatorubral-pallidoluysian atrophy (DRPLA) is a progressive neurodegenerative disorder that currently has no curative treatments. DRPLA is caused by an expansion of a CAG trinucleotide repeat region within the protein-encoding sequence of the atrophin-1 (ATN-1) gene. Inhibition of mutant ATN-1 protein expression is one strategy for treating DRPLA, and allele-selective gene silencing agents that block mutant expression over wild-type expression would be lead compounds for therapeutic development. Here we develop an assay for distinguishing mutant from wild-type ATN-1 protein by gel electrophoresis. We use this assay to evaluate duplex RNAs and single-stranded silencing RNAs (ss-siRNAs) for allele-selective inhibition of ATN-1 protein expression. We observed potent and allele-selective inhibition by RNA duplexes that contain mismatched bases relative to the CAG target and have the potential to form miRNA-like complexes. ss-siRNAs that contained mismatches were as selective as mismatch-containing duplexes. We also report allele-selective inhibition by duplex RNAs containing unlocked nucleic acids or abasic substitutions, although selectivities are not as high. Five compounds that showed >8-fold allele selectivity for mutant ATN-1 were also selective for inhibiting the expression of two other trinucleotide repeat disease genes, ataxin-3 (ATXN-3) and huntingtin (HTT). These data demonstrate that the expanded trinucleotide repeat within ATN-1 mRNA is a potential target for compounds designed to achieve allele-selective inhibition of ATN-1 protein, and one agent may allow the targeting of multiple disease genes.

Collaboration


Dive into the Satya Kuchimanchi's collaboration.

Top Co-Authors

Avatar

Muthiah Manoharan

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Martin Maier

Alnylam Pharmaceuticals

View shared research outputs
Top Co-Authors

Avatar

Akin Akinc

Alnylam Pharmaceuticals

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge