Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Satyanarayana Somavarapu is active.

Publication


Featured researches published by Satyanarayana Somavarapu.


Small | 2014

Topical Delivery of Avastin to the Posterior Segment of the Eye In Vivo Using Annexin A5-associated Liposomes

Benjamin Davis; Eduardo Normando; Li Guo; Lisa A. Turner; Shereen Nizari; Paul O'Shea; Stephen E. Moss; Satyanarayana Somavarapu; M Francesca Cordeiro

Effective delivery to the retina is presently one of the most challenging areas in drug development in ophthalmology, due to anatomical barriers preventing entry of therapeutic substances. Intraocular injection is presently the only route of administration for large protein therapeutics, including the anti-Vascular Endothelial Growth Factors Lucentis (ranibizumab) and Avastin (bevacizumab). Anti-VEGFs have revolutionised the management of age-related macular degeneration and have increasing indications for use as sight-saving therapies in diabetes and retinal vascular disease. Considerable resources have been allocated to develop non-invasive ocular drug delivery systems. It has been suggested that the anionic phospholipid binding protein annexin A5, may have a role in drug delivery. In the present study we demonstrate, using a combination of in vitro and in vivo assays, that the presence of annexin A5 can significantly enhance uptake and transcytosis of liposomal drug carrier systems across corneal epithelial barriers. This system is employed to deliver physiologically significant concentrations of Avastin to the posterior of the rat eye (127 ng/g) and rabbit retina (18 ng/g) after topical application. Our observations provide evidence to suggest annexin A5 mediated endocytosis can enhance the delivery of associated lipidic drug delivery vehicles across biological barriers, which may have therapeutic implications.


Bioconjugate Chemistry | 2012

Site-Specific PEGylation at Histidine Tags

Yuehua Cong; Estera Pawlisz; Penny Bryant; Sibu Balan; Emmanuelle Laurine; Rita Tommasi; Ruchi Singh; Sitara Dubey; Karolina Peciak; Matthew Bird; Amrita Sivasankar; Julia Swierkosz; Maurizio Muroni; Sibylle Heidelberger; Monika Farys; Farzad Khayrzad; Jeff Edwards; George Badescu; Ian Hodgson; Charles Heise; Satyanarayana Somavarapu; John Liddell; Keith Powell; Mire Zloh; Ji-Won Choi; Antony Godwin; Steve Brocchini

The efficacy of protein-based medicines can be compromised by their rapid clearance from the blood circulatory system. Achieving optimal pharmacokinetics is a key requirement for the successful development of safe protein-based medicines. Protein PEGylation is a clinically proven strategy to increase the circulation half-life of protein-based medicines. One limitation of PEGylation is that there are few strategies that achieve site-specific conjugation of PEG to the protein. Here, we describe the covalent conjugation of PEG site-specifically to a polyhistidine tag (His-tag) on a protein. His-tag site-specific PEGylation was achieved with a domain antibody (dAb) that had a 6-histidine His-tag on the C-terminus (dAb-His(6)) and interferon α-2a (IFN) that had an 8-histidine His-tag on the N-terminus (His(8)-IFN). The site of PEGylation at the His-tag for both dAb-His(6)-PEG and PEG-His(8)-IFN was confirmed by digestion, chromatographic, and mass-spectral studies. A methionine was also inserted directly after the N-terminal His-tag in IFN to give His(8)Met-IFN. Cyanogen bromide digestion studies of PEG-His(8)Met-IFN were also consistent with PEGylation at the His-tag. By using increased stoichiometries of the PEGylation reagent, it was possible to conjugate two separate PEG molecules to the His-tag of both the dAb and IFN proteins. Stability studies followed by in vitro evaluation confirmed that these PEGylated proteins retained their biological activity. In vivo PK studies showed that all of the His-tag PEGylated samples displayed extended circulation half-lives. Together, our results indicate that site-specific, covalent PEG conjugation at a His-tag can be achieved and biological activity maintained with therapeutically relevant proteins.


Pharmaceutical Research | 2013

Nanocarriers Targeting Dendritic Cells for Pulmonary Vaccine Delivery

Nitesh K. Kunda; Satyanarayana Somavarapu; Stephen B. Gordon; Gillian A. Hutcheon; Imran Y. Saleem

Pulmonary vaccine delivery has gained significant attention as an alternate route for vaccination without the use of needles. Immunization through the pulmonary route induces both mucosal and systemic immunity, and the delivery of antigens in a dry powder state can overcome some challenges such as cold-chain and availability of medical personnel compared to traditional liquid-based vaccines. Antigens formulated as nanoparticles (NPs) reach the respiratory airways of the lungs providing greater chance of uptake by relevant immune cells. In addition, effective targeting of antigens to the most ‘professional’ antigen presenting cells (APCs), the dendritic cells (DCs) yields an enhanced immune response and the use of an adjuvant further augments the generated immune response thus requiring less antigen/dosage to achieve vaccination. This review discusses the pulmonary delivery of vaccines, methods of preparing NPs for antigen delivery and targeting, the importance of targeting DCs and different techniques involved in formulating dry powders suitable for inhalation.


European Journal of Pharmaceutics and Biopharmaceutics | 2012

Crosslinked chitosan nanoparticle formulations for delivery from pressurized metered dose inhalers.

Ketan Sharma; Satyanarayana Somavarapu; Agnes Colombani; Nayna Govind; Kevin M.G. Taylor

Crosslinked chitosan nanoparticles, prepared using ionic gelation, have been successfully formulated into pressurized metered dose inhalers (pMDIs) with potential for deep lung delivery of therapeutic agents. Nanoparticles were prepared from crosslinked chitosan alone and incorporating PEG 600, PEG 1000 and PEG 5000 for dispersion in aerosol propellant, hydrofuoroalkane (HFA) 227. Spherical, smooth-surfaced, cationic particles of mean size less than 230 nm were produced. Nanoparticles were positively charged and non-aggregated at the pH of the airways. Crosslinked chitosan-PEG 1000 nanoparticles demonstrated greatest dispersibility and physical stability in HFA-227, whereas other formulations readily either creamed or sedimented. Following actuation from pMDIs, the fine particle fraction (FPF) for crosslinked chitosan-PEG 1000 nanoparticles, determined using a next generation impactor, was 34.0±1.4% with a mass median aerodynamic diameter of 4.92±0.3 μm. The FPFs of crosslinked chitosan, crosslinked chitosan-PEG 600 and crosslinked chitosan-PEG 5000 nanoparticles were 5.7±0.9%, 11.8±2.7% and 17.0±2.1%, respectively. These results indicate that crosslinked chitosan-PEG 1000-based nanoparticles are promising candidates for delivering therapeutic agents, particularly biopharmaceuticals, using pMDIs.


Molecular Pharmaceutics | 2014

Design and Development of Novel Mitochondrial Targeted Nanocarriers, DQAsomes for Curcumin Inhalation

Š. Zupančič; P. Kocbek; M. Zariwala; Derek Renshaw; M.O. Gul; Z. Elsaid; Kevin Taylor; Satyanarayana Somavarapu

Curcumin has potent antioxidant and anti-inflammatory properties but poor absorption following oral administration owing to its low aqueous solubility. Development of novel formulations to improve its in vivo efficacy is therefore challenging. In this study, formulation of curcumin-loaded DQAsomes (vesicles formed from the amphiphile, dequalinium) for pulmonary delivery is presented for the first time. The vesicles demonstrated mean hydrodynamic diameters between 170 and 200 nm, with a ζ potential of approximately +50 mV, high drug loading (up to 61%) and encapsulation efficiency (90%), resulting in enhanced curcumin aqueous solubility. Curcumin encapsulation in DQAsomes in the amorphous state was confirmed by X-ray diffraction and differential scanning calorimetry analysis. The existence of hydrogen bonds and cation-π interaction between curcumin and vesicle building blocks, namely dequalinium molecules, were shown in lyophilized DQAsomes using FT-IR analysis. Encapsulation of curcumin in DQAsomes enhanced the antioxidant activity of curcumin compared to free curcumin. DQAsome dispersion was successfully nebulized with the majority of the delivered dose deposited in the second stage of the twin-stage impinger. The vesicles showed potential for mitochondrial targeting. Curcumin-loaded DQAsomes thus represent a promising inhalation formulation with improved stability characteristics and mitochondrial targeting ability, indicating a novel approach for efficient curcumin delivery for effective treatment of acute lung injury and the rationale for future in vivo studies.


International Journal of Pharmaceutics | 2013

A novel approach to oral iron delivery using ferrous sulphate loaded solid lipid nanoparticles.

M. Gulrez Zariwala; Naba Elsaid; Timothy L. Jackson; Francisco Corral López; Sebastien Farnaud; Satyanarayana Somavarapu; Derek Renshaw

Iron (Fe) loaded solid lipid nanoparticles (SLNs) were formulated using stearic acid and iron absorption was evaluated in vitro using the cell line Caco-2 with intracellular ferritin formation as a marker of iron absorption. Iron loading was optimised at 1% Fe (w/w) lipid since an inverse relation was observed between initial iron concentration and SLN iron incorporation efficiency. Chitosan (Chi) was included to prepare chitosan coated SLNs. Particle size analysis revealed a sub-micron size range (300.3±31.75 nm to 495.1±80.42 nm), with chitosan containing particles having the largest dimensions. As expected, chitosan (0.1%, 0.2% and 0.4% w/v) conferred a net positive charge on the particle surface in a concentration dependent manner. For iron absorption experiments equal doses of Fe (20 μM) from selected formulations (SLN-FeA and SLN-Fe-ChiB) were added to Caco-2 cells and intracellular ferritin protein concentrations determined. Caco-2 iron absorption from SLN-FeA (583.98±40.83 ng/mg cell protein) and chitosan containing SLN-Fe-ChiB (642.77±29.37 ng/mg cell protein) were 13.42% and 24.9% greater than that from ferrous sulphate (FeSO4) reference (514.66±20.43 ng/mg cell protein) (p≤0.05). We demonstrate for the first time preparation, characterisation and superior iron absorption in vitro from SLNs, suggesting the potential of these formulations as a novel system for oral iron delivery.


Expert Opinion on Drug Delivery | 2016

Solidification of nanosuspensions for the production of solid oral dosage forms and inhalable dry powders

Maria Malamatari; Satyanarayana Somavarapu; Kevin M.G. Taylor; Graham Buckton

Abstract Introduction: Nanosuspensions combine the advantages of nanotherapeutics (e.g. increased dissolution rate and saturation solubility) with ease of commercialisation. Transformation of nanosuspensions to solid oral and inhalable dosage forms minimises the physical instability associated with their liquid state, enhances patient compliance and enables targeted oral and pulmonary drug delivery. Areas covered: This review outlines solidification methods for nanosuspensions. It includes spray and freeze drying as the most widely used techniques. Fluidised-bed coating, granulation and pelletisation are also discussed as they yield nanocrystalline formulations with more straightforward downstream processing to tablets or capsules. Spray-freeze drying, aerosol flow reactor and printing of nanosuspensions are also presented as promising alternative solidification techniques. Results regarding the solid state, in vitro dissolution and/or aerosolisation efficiency of the nanocrystalline formulations are given and combined with available in vivo data. Focus is placed on the redispersibility of the solid nanocrystalline formulations, which is a prerequisite for their clinical application. Expert opinion: A few solidified nanocrystalline products are already on the market and many more are in development. Oral and inhalable nanoparticle formulations are expected to have great potential especially in the areas of personalised medicine and delivery of high drug doses (e.g. antibiotics) to the lungs, respectively.


Journal of Pharmaceutical and Biomedical Analysis | 2016

Comparative evaluation of the effect of cyclodextrins and pH on aqueous solubility of apigenin

Zsófia Edit Pápay; Zita Sebestyén; Krisztina Ludányi; Nikolett Kállai; Emese Balogh; Annamária Kósa; Satyanarayana Somavarapu; Béla Böddi; István Antal

The aqueous solubility of a flavonoid, apigenin, was studied in the presence of first generation cyclodextrins (α-CyD, β-CyD, γ-CyD), ionic and nonionic synthetic derivatives of β-CyD, namely SBE-β-CyD, HP-β-CyD and RM-β-CyD at various physiological pH. The order of solubility enhancement was as follows: RM-β-CyD>SBE-β-CyD>γ-CyD>HP-β-CyD>β-CyD>α-CyD. The phase solubility diagrams of HP-β-CyD and SBE-β-CyD indicated Higuchi AL subtype behavior, suggesting 1:1 stoichiometry of the complex. In contrast, AP subtype, so higher order complex formation can be assumed in the case of RM-β-CyD and γ-CyD. The formation of inclusion complexes has been confirmed by absorption and fluorescence spectroscopic measurements. Increased antioxidant activity was observed due to the inclusion complexes. These results prove that synthetic derivatives of β-CyD will be potentially useful excipients in the development of drug delivery systems for healthcare products containing flavonoids.


International Journal of Pharmaceutics | 2013

Dry powder inhalation of macromolecules using novel PEG-co-polyester microparticle carriers

Hesham M. Tawfeek; Andrew Evans; Abid Iftikhar; Afzal-Ur-Rahman Mohammed; Anjumn Shabir; Satyanarayana Somavarapu; Gillian A. Hutcheon; Imran Y. Saleem

This study investigated optimizing the formulation parameters for encapsulation of a model mucinolytic enzyme, α-chymotrypsin (α-CH), within a novel polymer; poly(ethylene glycol)-co-poly(glycerol adipate-co-ω-pentadecalactone), PEG-co-(PGA-co-PDL) which were then applied to the formulation of DNase I. α-CH or DNase I loaded microparticles were prepared via spray drying from double emulsion (w(1)/o/w(2)) utilizing chloroform (CHF) as the organic solvent, L-leucine as a dispersibility enhancer and an internal aqueous phase (w(1)) containing PEG4500 or Pluronic(®) F-68 (PLF68). α-CH released from microparticles was investigated for bioactivity using the azocasein assay and the mucinolytic activity was assessed utilizing the degradation of mucin suspension assay. The chemical structure of PEG-co-(PGA-co-PDL) was characterized by (1)H NMR and FT-IR with both analyses confirming PEG incorporated into the polymer backbone, and any unreacted units removed. Optimum formulation α-CH-CHF/PLF68, 1% produced the highest bioactivity, enzyme encapsulation (20.08±3.91%), loading (22.31±4.34 μg/mg), FPF (fine particle fraction) (37.63±0.97%); FPD (fine particle dose) (179.88±9.43 μg), MMAD (mass median aerodynamic diameter) (2.95±1.61 μm), and the mucinolytic activity was equal to the native non-encapsulated enzyme up to 5h. DNase I-CHF/PLF68, 1% resulted in enzyme encapsulation (17.44±3.11%), loading (19.31±3.27 μg/mg) and activity (81.9±2.7%). The results indicate PEG-co-(PGA-co-PDL) can be considered as a potential biodegradable polymer carrier for dry powder inhalation of macromolecules for treatment of local pulmonary diseases.


International Journal of Pharmaceutics | 2013

Nebulised siRNA encapsulated crosslinked chitosan nanoparticles for pulmonary delivery

Ketan Sharma; Satyanarayana Somavarapu; Agnes Colombani; Nayna Govind; Kevin M.G. Taylor

PURPOSE To explore the potential of crosslinked chitosan nanoparticles as carriers for delivery of siRNA using a jet nebuliser. MATERIALS AND METHODS Nanoparticles encapsulating siRNA were prepared using an ionic crosslinking technique at chitosan to siRNA weight/weight ratios of 10:1, 30:1 and 50:1. Particles were characterised for their size, charge, morphology, pH stability and siRNA encapsulation efficiency. Gel electrophoresis was used to assess the association and stability of siRNA with nanoparticles, including after aerosolisation using a Pari LC Sprint jet nebuliser. The aerosolisation properties of FITC labelled chitosan nanoparticles were investigated using a two-stage impinger. Cell viability was performed with H-292 cells using a WST-1 assay. RESULTS Positively charged spherical nanoparticles were produced with mean diameters less than 150 nm, at all chitosan to siRNA ratios. Nanoparticles were non-aggregated at the pH of the airways and showed high siRNA encapsulation efficiency (>96%). Complete binding of siRNA to chitosan nanoparticles was observed when the w/w ratio was 50:1. Nebulisation produced fine particle fractions of 54±11% and 57.3±1.9% for chitosan and chitosan:siRNA (10:1 w/w) nanoparticles respectively. The stability of chitosan-encapsulated siRNA was maintained after nebulisation. Cell viability was high (>85%) at the highest chitosan concentration (83 μg/ml). CONCLUSION The results suggest that crosslinked chitosan nanoparticles have potential for siRNA delivery to the lungs using a jet nebuliser.

Collaboration


Dive into the Satyanarayana Somavarapu's collaboration.

Top Co-Authors

Avatar

Imran Y. Saleem

Liverpool John Moores University

View shared research outputs
Top Co-Authors

Avatar

M. Zariwala

University of Westminster

View shared research outputs
Top Co-Authors

Avatar

Derek Renshaw

University of Westminster

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nitesh K. Kunda

Liverpool John Moores University

View shared research outputs
Top Co-Authors

Avatar

Gillian A. Hutcheon

Liverpool John Moores University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Falko Steinbach

Animal and Plant Health Agency

View shared research outputs
Researchain Logo
Decentralizing Knowledge