Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sebastien Farnaud is active.

Publication


Featured researches published by Sebastien Farnaud.


Molecular Immunology | 2003

Lactoferrin—a multifunctional protein with antimicrobial properties

Sebastien Farnaud; Robert W. Evans

Lactoferrin is a member of the transferrin family of iron-binding proteins. Numerous functions have been reported and continue to be reported for the protein, some of which are related to its iron-binding properties. Its extensive antimicrobial activities were originally attributed to its ability to sequester essential iron, however, it is now established that it possesses bactericidal activities as a result of a direct interaction between the protein or lactoferrin-derived peptides. This article reviews the antimicrobial activities of lactoferrin and discusses the potential mode of action of lactoferrin-derived cationic peptides against Gram-negative bacteria in the light of recent studies.


Comparative Biochemistry and Physiology B | 2008

Isolation of lactoferrin from milk of different species: calorimetric and antimicrobial studies

Celia Conesa; Lourdes Sánchez; Carmen Rota; María D. Pérez; Miguel Calvo; Sebastien Farnaud; Robert W. Evans

Lactoferrin (LF) is an iron-binding glycoprotein found in different biological fluids of mammals and in neutrophils. It has been proposed to be involved in many functions, including protection from pathogens. In this work, purification of lactoferrin using an ion-exchange chromatography (SP-Sepharose) was attempted for the milk of the following animals: sheep (Ovis aries), goat (Capra hircus), camel (Camelus bactrianus), alpaca (Lama pacos), elephant (Elephas maximus) and grey seal (Halichoerus grypus), as well as human (Homo sapiens). Lactoferrin was identified in all the milks apart from that from grey seal. The thermal stability of the purified lactoferrins, in their native and iron-saturated forms, was studied by differential scanning calorimetry (DSC). Maximum temperature, onset temperature and enthalpy change of denaturation were higher when lactoferrins were saturated with iron than in their native form, indicating an increase in the stability of the protein structure upon iron-binding. Human lactoferrin was found to be the most heat-resistant and the other lactoferrins presented different degrees of thermoresistance, that of elephant being the least resistant. The antimicrobial activity of the different isolated lactoferrins was investigated against Escherichia coli 0157:H7. The minimal inhibitory concentrations (MICs) were determined by measuring the absorbance at 620 nm. The minimum bactericidal concentrations (MBCs) were also measured and it was found that camel lactoferrin was the most active lactoferrin against E. coli 0157:H7, whereas alpaca and human lactoferrins were the least active.


Current Medicinal Chemistry | 2005

Structure/Function Overview of Proteins Involved in Iron Storage and Transport

Peter J. Sargent; Sebastien Farnaud; Robert W. Evans

Iron, the major trace element in the body, is an essential component of many proteins and enzymes. As low-molecular-weight iron is potentially toxic to cells, higher organisms express a number of proteins for the transport and storage of iron. We review our current understanding of the intestinal absorption of iron in the light of recently identified membrane proteins, namely the ferrric reductase, Dcytb, the two iron(II) transport proteins, DMT1 and ferroportin/Ireg1, and hephaestin, the membrane-bound homologue of the ferroxidase ceruloplasmin. Two types of mammalian transferrin receptor, TfR1 and TfR2, are now known to exist. The structure of TfR1 and its role in the process of receptor-mediated cellular uptake of iron are presented together with structural information on the iron storage protein ferritin. Mechanisms for the regulation of levels of TfR1 and ferritin, as well as other proteins involved in iron homeostasis, are discussed. Our current knowledge and understanding of the structure of members of the transferrin family of iron-binding proteins and the nature of the iron-binding centres in transferrins is presented, together with information on the processes of iron-uptake and iron-release by transferrin and a summary of the elements that have been found to bind to transferrins.


The Scientific World Journal | 2010

Saliva: physiology and diagnostic potential in health and disease

Sebastien Farnaud; Ourania Kosti; Stephen J. Getting; Derek Renshaw

Saliva has been described as the mirror of the body. In a world of soaring healthcare costs and an environment where rapid diagnosis may be critical to a positive patient outcome, saliva is emerging as a viable alternative to blood sampling. In this review, we discuss the composition and various physiological roles of saliva in the oral cavity, including soft tissue protection, antimicrobial activities, and oral tissue repair. We then explore saliva as a diagnostic marker of local oral disease and focus particularly on oral cancers. The cancer theme continues when we focus on systemic disease diagnosis from salivary biomarkers. Communicable disease is the focus of the next section where we review the literature relating to the direct and indirect detection of pathogenic infections from human saliva. Finally, we discuss hormones involved in appetite regulation and whether saliva is a viable alternative to blood in order to monitor hormones that are involved in satiety.


Biochemical Journal | 2002

Support for a three-dimensional structure predicting a Cys-Glu-Lys catalytic triad for Pseudomonas aeruginosa amidase comes from site-directed mutagenesis and mutations altering substrate specificity.

Carlos Novo; Sebastien Farnaud; Renée Tata; Alda Clemente; Paul Brown

The aliphatic amidase from Pseudomonas aeruginosa belongs to the nitrilase superfamily, and Cys(166) is the nucleophile of the catalytic mechanism. A model of amidase was built by comparative modelling using the crystal structure of the worm nitrilase-fragile histidine triad fusion protein (NitFhit; Protein Data Bank accession number 1EMS) as a template. The amidase model predicted a catalytic triad (Cys-Glu-Lys) situated at the bottom of a pocket and identical with the presumptive catalytic triad of NitFhit. Three-dimensional models for other amidases belonging to the nitrilase superfamily also predicted Cys-Glu-Lys catalytic triads. Support for the structure for the P. aeruginosa amidase came from site-direct mutagenesis and from the locations of amino acid residues that altered substrate specificity or binding when mutated.


Journal of Hepatology | 1994

Expression of hepatocyte growth factor mRNA, and c-met mRNA (hepatocyte growth factor receptor) in human liver tumours

Clare Selden; Sebastien Farnaud; Shi Fa Ding; Nagy Habib; Christopher S. Foster; Humphrey Hodgson

We have quantified mRNA for the hepatocyte growth factor and its putative receptor the c-met proto-oncogene protein product, in a series of human primary and secondary liver tumours and adjacent non-neoplastic liver. In all hepatocellular cancers, hepatocyte growth factor 6 kb mRNA expression was less (mean 23.93% +/- 6.33% S.E.M. n = 7) in the tumours than in the adjacent normal liver. Both relative over- and under-expression of c-met transcripts were found in tumour tissue compared to non-neoplastic liver. Thus hepatocellular cancer tissue does not over-express mRNA for hepatocyte growth factor, though this growth factor might play a role in hyperproliferative states leading to liver cancer.


Biochimica et Biophysica Acta | 2012

The transfer of iron between ceruloplasmin and transferrins.

Kenneth White; Celia Conesa; Lourdes Sánchez; Maryam Amini; Sebastien Farnaud; Chanakan Lorvoralak; Robert W. Evans

BACKGROUND It is over 60years since the discovery and isolation of the serum ferroxidase ceruloplasmin. In that time much basic information about the protein has been elucidated including its catalytic and kinetic properties as an enzyme, expression, sequence and structure. The importance of its biological role is indicated in genetic diseases such as aceruloplasminemia where its function is lost through mutation. Despite this wealth of data, fundamental questions about its action remain unanswered and in this article we address the question of how ferric iron produced by the ferroxidase activity of ceruloplasmin could be taken up by transferrins or lactoferrins. METHODS Overlapping peptide libraries for human ceruloplasmin have been probed with a number of different lactoferrins to identify putative lactoferrin-binding regions on human ceruloplasmin. Docking software, 3D-Garden, has been used to model the binding of human lactoferrin to human ceruloplasmin. RESULTS Upon probing the human ceruloplasmin library with human lactoferrin, three predominantly acidic lactoferrin-binding peptides, located in domains 2, 5 and 6 of human ceruloplasmin, were identified. The docking software identified a complex such that the N-lobe of human apo-lactoferrin interacts with the catalytic ferroxidase centre on human ceruloplasmin. GENERAL SIGNIFICANCE In vitro binding studies and molecular modelling indicate that lactoferrin can bind to ceruloplasmin such that a direct transfer of ferric iron between the two proteins is possible. A direct transfer of ferric iron from ceruloplasmin to lactoferrin would prevent both the formation of potentially toxic hydroxyl radicals and the utilization of iron by pathogenic bacteria.


International Journal of Pharmaceutics | 2013

A novel approach to oral iron delivery using ferrous sulphate loaded solid lipid nanoparticles.

M. Gulrez Zariwala; Naba Elsaid; Timothy L. Jackson; Francisco Corral López; Sebastien Farnaud; Satyanarayana Somavarapu; Derek Renshaw

Iron (Fe) loaded solid lipid nanoparticles (SLNs) were formulated using stearic acid and iron absorption was evaluated in vitro using the cell line Caco-2 with intracellular ferritin formation as a marker of iron absorption. Iron loading was optimised at 1% Fe (w/w) lipid since an inverse relation was observed between initial iron concentration and SLN iron incorporation efficiency. Chitosan (Chi) was included to prepare chitosan coated SLNs. Particle size analysis revealed a sub-micron size range (300.3±31.75 nm to 495.1±80.42 nm), with chitosan containing particles having the largest dimensions. As expected, chitosan (0.1%, 0.2% and 0.4% w/v) conferred a net positive charge on the particle surface in a concentration dependent manner. For iron absorption experiments equal doses of Fe (20 μM) from selected formulations (SLN-FeA and SLN-Fe-ChiB) were added to Caco-2 cells and intracellular ferritin protein concentrations determined. Caco-2 iron absorption from SLN-FeA (583.98±40.83 ng/mg cell protein) and chitosan containing SLN-Fe-ChiB (642.77±29.37 ng/mg cell protein) were 13.42% and 24.9% greater than that from ferrous sulphate (FeSO4) reference (514.66±20.43 ng/mg cell protein) (p≤0.05). We demonstrate for the first time preparation, characterisation and superior iron absorption in vitro from SLNs, suggesting the potential of these formulations as a novel system for oral iron delivery.


Biometals | 2006

Modelling of a metal-containing hepcidin

Sebastien Farnaud; Alpesh Patel; Robert W. Evans

Hepcidin was originally identified as a liver-expressed antimicrobial peptide but further studies have shown that it also has a key role in iron homeostasis. The NMR structure of the synthetic peptides reveal a distorted beta-sheet containing 4 disulphide bridges, with an unusual vicinal disulphide bridge which has been suggested to be functionally significant. In this study, we report the presence of co-purified iron with the urine-purified 20 and 25 residue hepcidins. Since the published structure does not allow metal binding, the interaction of hepcidin with metals was investigated for other possible structural conformations by threading its primary sequence onto existing 3D folds. Several alignments were obtained and the best scores were used to build a 3D model of hepcidin containing one atom of iron. The new 3D structure, that contains only reduced Cys residues, is completely different from the solved structure of the synthetic peptide. Although the model presented here shows only one metal bound to the peptide, the binding of several metal atoms cannot be excluded from such a short flexible peptide. The co-purification of iron with both peptides, together with our 3D model, suggest a conformational polymorphism for hepcidin, reminiscent of the iron regulatory proteins IRPs.


FEBS Letters | 2004

The plug domain of a neisserial TonB‐dependent transporter retains structural integrity in the absence of its transmembrane β‐barrel

M. Oke; Robert Sarra; R. Ghirlando; Sebastien Farnaud; Andrew Gorringe; Robert W. Evans; Susan K. Buchanan

Transferrin binding protein A (TbpA) is a TonB‐dependent outer membrane protein expressed by pathogenic bacteria for iron acquisition from human transferrin. The N‐terminal 160 residues (plug domain) of TbpA were overexpressed in both the periplasm and cytoplasm of Escherichia coli. We found this domain to be soluble and monodisperse in solution, exhibiting secondary structure elements found in plug domains of structurally characterized TonB‐dependent transporters. Although the TbpA plug domain is apparently correctly folded, we were not able to observe an interaction with human transferrin by isothermal titration calorimetry or nitrocellulose binding assays. These experiments suggest that the plug domain may fold independently of the β‐barrel, but extracellular loops of the β‐barrel are required for ligand binding.

Collaboration


Dive into the Sebastien Farnaud's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Derek Renshaw

University of Westminster

View shared research outputs
Top Co-Authors

Avatar

M. Zariwala

University of Westminster

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

K. Mehta

University of Westminster

View shared research outputs
Top Co-Authors

Avatar

Vinood B. Patel

University of Westminster

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge