Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Saurabh Asthana is active.

Publication


Featured researches published by Saurabh Asthana.


Science | 2014

Mutational Analysis Reveals the Origin and Therapy-driven Evolution of Recurrent Glioma

Brett E. Johnson; Tali Mazor; Chibo Hong; Michael Barnes; Koki Aihara; Cory Y. McLean; Shaun D. Fouse; Shogo Yamamoto; Hiroki R. Ueda; Kenji Tatsuno; Saurabh Asthana; Llewellyn E. Jalbert; Sarah J. Nelson; Andrew W. Bollen; W. Clay Gustafson; Elise Charron; William A. Weiss; Ivan Smirnov; Jun S. Song; Adam B. Olshen; Soonmee Cha; Yongjun Zhao; Richard A. Moore; Andrew J. Mungall; Steven J.M. Jones; Martin Hirst; Marco A. Marra; Nobuhito Saito; Hiroyuki Aburatani; Akitake Mukasa

Back with a Vengeance After surgery, gliomas (a type of brain tumor) recur in nearly all patients and often in a more aggressive form. Johnson et al. (p. 189, published online 12 December 2013) used exome sequencing to explore whether recurrent tumors harbor different mutations than the primary tumors and whether the mutational profile in the recurrences is influenced by postsurgical treatment of patients with temozolomide (TMZ), a chemotherapeutic drug known to damage DNA. In more than 40% of cases, at least half of the mutations in the initial glioma were undetected at recurrence. The recurrent tumors in many of the TMZ-treated patients bore the signature of TMZ-induced mutagenesis and appeared to follow an evolutionary path to high-grade glioma distinct from that in untreated patients. Primary brain tumors and their recurrences can exhibit vastly different mutational profiles. Tumor recurrence is a leading cause of cancer mortality. Therapies for recurrent disease may fail, at least in part, because the genomic alterations driving the growth of recurrences are distinct from those in the initial tumor. To explore this hypothesis, we sequenced the exomes of 23 initial low-grade gliomas and recurrent tumors resected from the same patients. In 43% of cases, at least half of the mutations in the initial tumor were undetected at recurrence, including driver mutations in TP53, ATRX, SMARCA4, and BRAF; this suggests that recurrent tumors are often seeded by cells derived from the initial tumor at a very early stage of their evolution. Notably, tumors from 6 of 10 patients treated with the chemotherapeutic drug temozolomide (TMZ) followed an alternative evolutionary path to high-grade glioma. At recurrence, these tumors were hypermutated and harbored driver mutations in the RB (retinoblastoma) and Akt-mTOR (mammalian target of rapamycin) pathways that bore the signature of TMZ-induced mutagenesis.


Nature Biotechnology | 2016

Identifying recurrent mutations in cancer reveals widespread lineage diversity and mutational specificity

Matthew T. Chang; Saurabh Asthana; Sizhi Paul Gao; Byron H. Lee; Jocelyn S. Chapman; Cyriac Kandoth; Jianjiong Gao; Nicholas D. Socci; David B. Solit; Adam B. Olshen; Nikolaus Schultz; Barry S. Taylor

Mutational hotspots indicate selective pressure across a population of tumor samples, but their prevalence within and across cancer types is incompletely characterized. An approach to detect significantly mutated residues, rather than methods that identify recurrently mutated genes, may uncover new biologically and therapeutically relevant driver mutations. Here, we developed a statistical algorithm to identify recurrently mutated residues in tumor samples. We applied the algorithm to 11,119 human tumors, spanning 41 cancer types, and identified 470 somatic substitution hotspots in 275 genes. We find that half of all human tumors possess one or more mutational hotspots with widespread lineage-, position- and mutant allele–specific differences, many of which are likely functional. In total, 243 hotspots were novel and appeared to affect a broad spectrum of molecular function, including hotspots at paralogous residues of Ras-related small GTPases RAC1 and RRAS2. Redefining hotspots at mutant amino acid resolution will help elucidate the allele-specific differences in their function and could have important therapeutic implications.


Nature Genetics | 2015

The Hippo effector YAP promotes resistance to RAF- and MEK-targeted cancer therapies

Luping Lin; Amit J. Sabnis; Elton Chan; Victor Olivas; Lindsay Cade; Evangelos Pazarentzos; Saurabh Asthana; Dana S. Neel; Jenny Jiacheng Yan; Xinyuan Lu; Luu Pham; Mingxue M Wang; Niki Karachaliou; Maria Gonzalez Cao; Jose Luis Manzano; Jose Miguel Sanchez Torres; Fiamma Buttitta; Charles M. Rudin; Eric A. Collisson; Alain Patrick Algazi; Eric Michael Robinson; Iman Osman; Eva Muñoz-Couselo; Javier Cortes; Dennie T. Frederick; Zachary A. Cooper; Martin McMahon; Antonio Marchetti; Rafael Rosell; Keith T. Flaherty

Resistance to RAF- and MEK-targeted therapy is a major clinical challenge. RAF and MEK inhibitors are initially but only transiently effective in some but not all patients with BRAF gene mutation and are largely ineffective in those with RAS gene mutation because of resistance. Through a genetic screen in BRAF-mutant tumor cells, we show that the Hippo pathway effector YAP (encoded by YAP1) acts as a parallel survival input to promote resistance to RAF and MEK inhibitor therapy. Combined YAP and RAF or MEK inhibition was synthetically lethal not only in several BRAF-mutant tumor types but also in RAS-mutant tumors. Increased YAP in tumors harboring BRAF V600E was a biomarker of worse initial response to RAF and MEK inhibition in patients, establishing the clinical relevance of our findings. Our data identify YAP as a new mechanism of resistance to RAF- and MEK-targeted therapy. The findings unveil the synthetic lethality of combined suppression of YAP and RAF or MEK as a promising strategy to enhance treatment response and patient survival.


Nature Medicine | 2015

RAS-MAPK dependence underlies a rational polytherapy strategy in EML4-ALK–positive lung cancer

Gorjan Hrustanovic; Victor Olivas; Evangelos Pazarentzos; Asmin Tulpule; Saurabh Asthana; Collin M. Blakely; Ross A. Okimoto; Luping Lin; Dana S. Neel; Amit J. Sabnis; Jennifer Flanagan; Elton Chan; Marileila Varella-Garcia; Dara L. Aisner; Aria Vaishnavi; Sai-Hong Ignatius Ou; Eric A. Collisson; Eiki Ichihara; Philip C. Mack; Christine M. Lovly; Niki Karachaliou; Rafael Rosell; Jonathan W. Riess; Robert C. Doebele; Trever G. Bivona

One strategy for combating cancer-drug resistance is to deploy rational polytherapy up front that suppresses the survival and emergence of resistant tumor cells. Here we demonstrate in models of lung adenocarcinoma harboring the oncogenic fusion of ALK and EML4 that the GTPase RAS–mitogen-activated protein kinase (MAPK) pathway, but not other known ALK effectors, is required for tumor-cell survival. EML4-ALK activated RAS-MAPK signaling by engaging all three major RAS isoforms through the HELP domain of EML4. Reactivation of the MAPK pathway via either a gain in the number of copies of the gene encoding wild-type K-RAS (KRASWT) or decreased expression of the MAPK phosphatase DUSP6 promoted resistance to ALK inhibitors in vitro, and each was associated with resistance to ALK inhibitors in individuals with EML4-ALK–positive lung adenocarcinoma. Upfront inhibition of both ALK and the kinase MEK enhanced both the magnitude and duration of the initial response in preclinical models of EML4-ALK lung adenocarcinoma. Our findings identify RAS-MAPK dependence as a hallmark of EML4-ALK lung adenocarcinoma and provide a rationale for the upfront inhibition of both ALK and MEK to forestall resistance and improve patient outcomes.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Widely distributed noncoding purifying selection in the human genome

Saurabh Asthana; William Stafford Noble; Gregory V. Kryukov; Charles E. Grant; Shamil R. Sunyaev; John A. Stamatoyannopoulos

It is widely assumed that human noncoding sequences comprise a substantial reservoir for functional variants impacting gene regulation and other chromosomal processes. Evolutionarily conserved noncoding sequences (CNSs) in the human genome have attracted considerable attention for their potential to simplify the search for functional elements and phenotypically important human alleles. A major outstanding question is whether functionally significant human noncoding variation is concentrated in CNSs or distributed more broadly across the genome. Here, we combine wholegenome sequence data from four nonhuman species (chimp, dog, mouse, and rat) with recently available comprehensive human polymorphism data to analyze selection at single-nucleotide resolution. We show that a substantial fraction of active purifying selection in human noncoding sequences occurs outside of CNSs and is diffusely distributed across the genome. This finding suggests the existence of a large complement of human noncoding variants that may impact gene expression and phenotypic traits, the majority of which will escape detection with current approaches to genome analysis.


Cancer Discovery | 2014

Synthetic Lethality in ATM-Deficient RAD50-Mutant Tumors Underlies Outlier Response to Cancer Therapy

Hikmat Al-Ahmadie; Gopa Iyer; Marcel Hohl; Saurabh Asthana; Akiko Inagaki; Nikolaus Schultz; Aphrothiti J. Hanrahan; Sasinya N. Scott; A. Rose Brannon; Gregory McDermott; Mono Pirun; Irina Ostrovnaya; Philip H. Kim; Nicholas D. Socci; Agnes Viale; Gary K. Schwartz; Victor E. Reuter; Bernard H. Bochner; Jonathan E. Rosenberg; Dean F. Bajorin; Michael F. Berger; John H.J. Petrini; David B. Solit; Barry S. Taylor

UNLABELLED Metastatic solid tumors are almost invariably fatal. Patients with disseminated small-cell cancers have a particularly unfavorable prognosis, with most succumbing to their disease within two years. Here, we report on the genetic and functional analysis of an outlier curative response of a patient with metastatic small-cell cancer to combined checkpoint kinase 1 (CHK1) inhibition and DNA-damaging chemotherapy. Whole-genome sequencing revealed a clonal hemizygous mutation in the Mre11 complex gene RAD50 that attenuated ATM signaling which in the context of CHK1 inhibition contributed, via synthetic lethality, to extreme sensitivity to irinotecan. As Mre11 mutations occur in a diversity of human tumors, the results suggest a tumor-specific combination therapy strategy in which checkpoint inhibition in combination with DNA-damaging chemotherapy is synthetically lethal in tumor cells but not normal cells with somatic mutations that impair Mre11 complex function. SIGNIFICANCE Strategies to effect deep and lasting responses to cancer therapy in patients with metastatic disease have remained difficult to attain, especially in early-phase clinical trials. Here, we present an in-depth genomic and functional genetic analysis identifying RAD50 hypomorphism as a contributing factor to a curative response to systemic combination therapy in a patient with recurrent, metastatic small-cell cancer.


PLOS Computational Biology | 2005

Analysis of Sequence Conservation at Nucleotide Resolution

Saurabh Asthana; Mikhail A. Roytberg; John A. Stamatoyannopoulos; Shamil R. Sunyaev

One of the major goals of comparative genomics is to understand the evolutionary history of each nucleotide in the human genome sequence, and the degree to which it is under selective pressure. Ascertainment of selective constraint at nucleotide resolution is particularly important for predicting the functional significance of human genetic variation and for analyzing the sequence substructure of cis-regulatory sequences and other functional elements. Current methods for analysis of sequence conservation are focused on delineation of conserved regions comprising tens or even hundreds of consecutive nucleotides. We therefore developed a novel computational approach designed specifically for scoring evolutionary conservation at individual base-pair resolution. Our approach estimates the rate at which each nucleotide position is evolving, computes the probability of neutrality given this rate estimate, and summarizes the result in a Sequence CONservation Evaluation (SCONE) score. We computed SCONE scores in a continuous fashion across 1% of the human genome for which high-quality sequence information from up to 23 genomes are available. We show that SCONE scores are clearly correlated with the allele frequency of human polymorphisms in both coding and noncoding regions. We find that the majority of noncoding conserved nucleotides lie outside of longer conserved elements predicted by other conservation analyses, and are experiencing ongoing selection in modern humans as evident from the allele frequency spectrum of human polymorphism. We also applied SCONE to analyze the distribution of conserved nucleotides within functional regions. These regions are markedly enriched in individually conserved positions and short (<15 bp) conserved “chunks.” Our results collectively suggest that the majority of functionally important noncoding conserved positions are highly fragmented and reside outside of canonically defined long conserved noncoding sequences. A small subset of these fragmented positions may be identified with high confidence.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Mapping the molecular determinants of BRAF oncogene dependence in human lung cancer

Luping Lin; Saurabh Asthana; Elton Chan; Sourav Bandyopadhyay; Maria M. Martins; Victor Olivas; Jenny Jiacheng Yan; Luu Pham; Mingxue Michelle Wang; Gideon Bollag; David B. Solit; Eric A. Collisson; Charles M. Rudin; Barry S. Taylor; Trever G. Bivona

Significance Oncogenic mutations in the BRAF kinase occur in 6–8% of nonsmall cell lung cancers (NSCLCs), but the biological and clinical relevance of these mutations is unclear. We uncovered mechanisms of resistance to BRAF inhibition in NSCLC using an integrated functional chemical genetics approach in human BRAF-mutant NSCLC cells and clinical specimens. Our results provide biological insights into the regulation of BRAF oncogene dependence and identify strategies to optimize outcomes in BRAF-mutant NSCLC patients. Oncogenic mutations in the BRAF kinase occur in 6–8% of nonsmall cell lung cancers (NSCLCs), accounting for more than 90,000 deaths annually worldwide. The biological and clinical relevance of these BRAF mutations in NSCLC is incompletely understood. Here we demonstrate that human NSCLC cells with BRAFV600E, but not other BRAF mutations, initially are sensitive to BRAF-inhibitor treatment. However, these BRAFV600E NSCLC cells rapidly acquire resistance to BRAF inhibition through at least one of two discrete molecular mechanisms: (i) loss of full-length BRAFV600E coupled with expression of an aberrant form of BRAFV600E that retains RAF pathway dependence or (ii) constitutive autocrine EGF receptor (EGFR) signaling driven by c-Jun–mediated EGFR ligand expression. BRAFV600E cells with EGFR-driven resistance are characterized by hyperphosphorylated protein kinase AKT, a biomarker we validated in BRAF inhibitor-resistant NSCLC clinical specimens. These data reveal the multifaceted molecular mechanisms by which NSCLCs establish and regulate BRAF oncogene dependence, provide insights into BRAF–EGFR signaling crosstalk, and uncover mechanism-based strategies to optimize clinical responses to BRAF oncogene inhibition.


Nature Genetics | 2017

Inactivation of Capicua drives cancer metastasis

Ross A. Okimoto; Frank Breitenbuecher; Victor Olivas; Wei Wu; Beatrice Gini; Matan Hofree; Saurabh Asthana; Gorjan Hrustanovic; Jennifer Flanagan; Asmin Tulpule; Collin M. Blakely; Henry J Haringsma; Andrew Simmons; Kyle Gowen; James Suh; Vincent A. Miller; Siraj M. Ali; Martin Schuler; Trever G. Bivona

Metastasis is the leading cause of death in people with lung cancer, yet the molecular effectors underlying tumor dissemination remain poorly defined. Through the development of an in vivo spontaneous lung cancer metastasis model, we show that the developmentally regulated transcriptional repressor Capicua (CIC) suppresses invasion and metastasis. Inactivation of CIC relieves repression of its effector ETV4, driving ETV4-mediated upregulation of MMP24, which is necessary and sufficient for metastasis. Loss of CIC, or an increase in levels of its effectors ETV4 and MMP24, is a biomarker of tumor progression and worse outcomes in people with lung and/or gastric cancer. Our findings reveal CIC as a conserved metastasis suppressor, highlighting new anti-metastatic strategies that could potentially improve patient outcomes.


Blood | 2017

Heterogeneous resistance to quizartinib in acute myeloid leukemia revealed by single-cell analysis

Catherine C. Smith; Amy L. Paguirigan; Grace R. Jeschke; Kimberly Lin; Evan Massi; Theodore Tarver; Chen Shan Chin; Saurabh Asthana; Adam B. Olshen; Kevin Travers; Susana Wang; Mark Levis; Alexander E. Perl; Jerald P. Radich; Neil P. Shah

Genomic studies have revealed significant branching heterogeneity in cancer. Studies of resistance to tyrosine kinase inhibitor therapy have not fully reflected this heterogeneity because resistance in individual patients has been ascribed to largely mutually exclusive on-target or off-target mechanisms in which tumors either retain dependency on the target oncogene or subvert it through a parallel pathway. Using targeted sequencing from single cells and colonies from patient samples, we demonstrate tremendous clonal diversity in the majority of acute myeloid leukemia (AML) patients with activating FLT3 internal tandem duplication mutations at the time of acquired resistance to the FLT3 inhibitor quizartinib. These findings establish that clinical resistance to quizartinib is highly complex and reflects the underlying clonal heterogeneity of AML.

Collaboration


Dive into the Saurabh Asthana's collaboration.

Top Co-Authors

Avatar

Barry S. Taylor

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Victor Olivas

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Luping Lin

University of California

View shared research outputs
Top Co-Authors

Avatar

Adam B. Olshen

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Matthew T. Chang

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David B. Solit

Memorial Sloan Kettering Cancer Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge