Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Trever G. Bivona is active.

Publication


Featured researches published by Trever G. Bivona.


Nature Genetics | 2012

Activation of the AXL kinase causes resistance to EGFR-targeted therapy in lung cancer

Zhenfeng Zhang; Jae Cheol Lee; Luping Lin; Victor Olivas; Valerie Au; Thomas LaFramboise; Mohamed Y. Abdel-Rahman; Xiaoqi Wang; Alan D. Levine; Jin Kyung Rho; Yun Jung Choi; Chang Min Choi; Sang We Kim; Se Jin Jang; Young Soo Park; Woo Sung Kim; Dae Ho Lee; Jung Shin Lee; Vincent A. Miller; Maria E. Arcila; Marc Ladanyi; Philicia Moonsamy; Charles L. Sawyers; Titus J. Boggon; Patrick C. Ma; Carlota Costa; Miquel Taron; Rafael Rosell; Balazs Halmos; Trever G. Bivona

Human non–small cell lung cancers (NSCLCs) with activating mutations in EGFR frequently respond to treatment with EGFR-targeted tyrosine kinase inhibitors (TKIs), such as erlotinib, but responses are not durable, as tumors acquire resistance. Secondary mutations in EGFR (such as T790M) or upregulation of the MET kinase are found in over 50% of resistant tumors. Here, we report increased activation of AXL and evidence for epithelial-to-mesenchymal transition (EMT) in multiple in vitro and in vivo EGFR-mutant lung cancer models with acquired resistance to erlotinib in the absence of the EGFR p.Thr790Met alteration or MET activation. Genetic or pharmacological inhibition of AXL restored sensitivity to erlotinib in these tumor models. Increased expression of AXL and, in some cases, of its ligand GAS6 was found in EGFR-mutant lung cancers obtained from individuals with acquired resistance to TKIs. These data identify AXL as a promising therapeutic target whose inhibition could prevent or overcome acquired resistance to EGFR TKIs in individuals with EGFR-mutant lung cancer.


Nature Cell Biology | 2002

Ras signalling on the endoplasmic reticulum and the Golgi

Vi K. Chiu; Trever G. Bivona; Angela Hach; J. Bernard Sajous; Joseph Silletti; Heidi Wiener; Ronald L Johnson; Adrienne D. Cox; Mark R. Philips

Current models evoke the plasma membrane (PM) as the exclusive platform from which Ras regulates signalling. We developed a fluorescent probe that reports where and when Ras is activated in living cells. We show that oncogenic H-Ras and N-Ras engage Raf-1 on the Golgi and that endogenous Ras and unpalmitoylated H-Ras are activated in response to mitogens on the Golgi and endoplasmic reticulum (ER), respectively. We also demonstrate that H-Ras that is restricted to the ER can activate the Erk pathway and transform fibroblasts, and that Ras localized on different membrane compartments differentially engages various signalling pathways. Thus, Ras signalling is not limited to the PM, but also proceeds on the endomembrane.


Nature | 2003

Phospholipase Cγ activates Ras on the Golgi apparatus by means of RasGRP1

Trever G. Bivona; Ignacio Pérez de Castro; Ian M. Ahearn; Theresa M. Grana; Vi K. Chiu; Peter J. Cullen; Angel Pellicer; Adrienne D. Cox; Mark R. Philips

Ras proteins regulate cellular growth and differentiation, and are mutated in 30% of cancers. We have shown recently that Ras is activated on and transmits signals from the Golgi apparatus as well as the plasma membrane but the mechanism of compartmentalized signalling was not determined. Here we show that, in response to Src-dependent activation of phospholipase Cγ1, the Ras guanine nucleotide exchange factor RasGRP1 translocated to the Golgi where it activated Ras. Whereas Ca2+ positively regulated Ras on the Golgi apparatus through RasGRP1, the same second messenger negatively regulated Ras on the plasma membrane by means of the Ras GTPase-activating protein CAPRI. Ras activation after T-cell receptor stimulation in Jurkat cells, rich in RasGRP1, was limited to the Golgi apparatus through the action of CAPRI, demonstrating unambiguously a physiological role for Ras on Golgi. Activation of Ras on Golgi also induced differentiation of PC12 cells, transformed fibroblasts and mediated radioresistance. Thus, activation of Ras on Golgi has important biological consequences and proceeds through a pathway distinct from the one that activates Ras on the plasma membrane.


Molecular Cell | 2004

Shp2 Regulates Src Family Kinase Activity and Ras/Erk Activation by Controlling Csk Recruitment

Si Qing Zhang; Wentian Yang; Maria I. Kontaridis; Trever G. Bivona; Gengyun Wen; Toshiyuki Araki; Jincai Luo; Julie A. Thompson; Burkhart Schraven; Mark R. Philips; Benjamin G. Neel

The protein-tyrosine phosphatase Shp2 plays an essential role in growth factor and integrin signaling, and Shp2 mutations cause developmental defects and/or malignancy. Previous work has placed Shp2 upstream of Ras. However, the mechanism of Shp2 action and its substrate(s) are poorly defined. Additional Shp2 functions downstream of, or parallel to, Ras/Erk activation also are proposed. Here, we show that Shp2 promotes Src family kinase (SFK) activation by regulating the phosphorylation of the Csk regulator PAG/Cbp, thereby controlling Csk access to SFKs. In Shp2-deficient cells, SFK inhibitory C-terminal tyrosines are hyperphosphorylated, and the tyrosyl phosphorylation of multiple SFK substrates, including Plcgamma1, is decreased. Decreased Plcgamma1 phosphorylation leads to defective Ras activation on endomembranes, and may help account for impaired Erk activation in Shp2-deficient cells. Decreased phosphorylation/activation of other SFK substrates may explain additional consequences of Shp2 deficiency, including altered cell spreading, stress fibers, focal adhesions, and motility.


Nature | 2011

FAS and NF-κB signalling modulate dependence of lung cancers on mutant EGFR

Trever G. Bivona; Haley Hieronymus; Joel Wm. Parker; Kenneth Chang; Miquel Taron; Rafael Rosell; Philicia Moonsamy; Kimberly B. Dahlman; Vincent A. Miller; Carlota Costa; Gregory J. Hannon; Charles L. Sawyers

Human lung adenocarcinomas with activating mutations in EGFR (epidermal growth factor receptor) often respond to treatment with EGFR tyrosine kinase inhibitors (TKIs), but the magnitude of tumour regression is variable and transient. This heterogeneity in treatment response could result from genetic modifiers that regulate the degree to which tumour cells are dependent on mutant EGFR. Through a pooled RNA interference screen, we show that knockdown of FAS and several components of the NF-κB pathway specifically enhanced cell death induced by the EGFR TKI erlotinib in EGFR-mutant lung cancer cells. Activation of NF-κB through overexpression of c-FLIP or IKK (also known as CFLAR and IKBKB, respectively), or silencing of IκB (also known as NFKBIA), rescued EGFR-mutant lung cancer cells from EGFR TKI treatment. Genetic or pharmacologic inhibition of NF-κB enhanced erlotinib-induced apoptosis in erlotinib-sensitive and erlotinib-resistant EGFR-mutant lung cancer models. Increased expression of the NF-κB inhibitor IκB predicted for improved response and survival in EGFR-mutant lung cancer patients treated with EGFR TKI. These data identify NF-κB as a potential companion drug target, together with EGFR, in EGFR-mutant lung cancers and provide insight into the mechanisms by which tumour cells escape from oncogene dependence.


Clinical Cancer Research | 2011

Pretreatment EGFR T790M Mutation and BRCA1 mRNA Expression in Erlotinib-Treated Advanced Non–Small-Cell Lung Cancer Patients with EGFR Mutations

Rafael Rosell; Miguel Angel Molina; Carlota Costa; Sara Simonetti; Anna Gimenez-Capitan; Jordi Bertran-Alamillo; Clara Mayo; Teresa Moran; Pedro Mendez; Felipe Cardenal; Dolores Isla; Mariano Provencio; Manuel Cobo; Amelia Insa; Rosario García-Campelo; Noemi Reguart; Margarita Majem; Santiago Viteri; Enric Carcereny; Ruth Porta; Bartomeu Massuti; Cristina Queralt; Itziar de Aguirre; Jose Miguel Sanchez; Maria Sanchez-Ronco; José L. Mate; Aurelio Ariza; Susana Benlloch; Jose Javier Sanchez; Trever G. Bivona

Purpose: Advanced non–small-cell lung cancer (NSCLC) patients harboring epidermal growth factor receptor (EGFR) mutations (deletion in exon 19 or L858R) show an impressive progression-free survival of 14 months when treated with erlotinib. However, the presence of EGFR mutations can only imperfectly predict outcome. We hypothesized that progression-free survival could be influenced both by the pretreatment EGFR T790M mutation and by components of DNA repair pathways. Experimental Design: We assessed the T790M mutation in pretreatment diagnostic specimens from 129 erlotinib-treated advanced NSCLC patients with EGFR mutations. The expression of eight genes and two proteins involved in DNA repair and four receptor tyrosine kinases was also examined. Results: The EGFR T790M mutation was observed in 45 of 129 patients (35%). Progression-free survival was 12 months in patients with and 18 months in patients without the T790M mutation (P = 0.05). Progression-free survival was 27 months in patients with low BRCA1 mRNA levels, 18 months in those with intermediate levels, and 10 months in those with high levels (P = 0.02). In the multivariate analysis, the presence of the T790M mutation (HR, 4.35; P = 0.001), intermediate BRCA1 levels (HR, 8.19; P < 0.0001), and high BRCA1 levels (HR, 8.46; P < 0.0001) emerged as markers of shorter progression-free survival. Conclusions: Low BRCA1 levels neutralized the negative effect of the T790M mutation and were associated with longer progression-free survival to erlotinib. We advocate baseline assessment of the T790M mutation and BRCA1 expression to predict outcome and provide alternative individualized treatment to patients based on T790M mutations and BRCA1 expression. Clin Cancer Res; 17(5); 1–9. ©2011 AACR.


Nature Immunology | 2004

Membranes as messengers in T cell adhesion signaling.

Michael L. Dustin; Trever G. Bivona; Mark R. Philips

Talin and RapL are components of molecular pathways that regulate the avidity of the integrin lymphocyte function–associated antigen 1 (LFA-1) for its ligand, intercellular adhesion molecule 1. In this review, we discuss recent advances in our understanding of LFA-1 affinity regulation and signaling and discuss a scenario for how Talin and Rap1 might act in synergy to achieve regulation of LFA-1 that is tailored to the specific functional requirements of different situations. Speedy delivery of signals may be crucial, and membrane trafficking from endosomes and the Golgi apparatus seem to be essential in delivering the messages from spatially segregated surface receptors.


Journal of Cell Biology | 2004

Rap1 up-regulation and activation on plasma membrane regulates T cell adhesion

Trever G. Bivona; Heidi Wiener; Ian M. Ahearn; Joseph Silletti; Vi K. Chiu; Mark R. Philips

Rap1 and Ras are closely related GTPases that share some effectors but have distinct functions. We studied the subcellular localization of Rap1 and its sites of activation in living cells. Both GFP-tagged Rap1 and endogenous Rap1 were localized to the plasma membrane (PM) and endosomes. The PM association of GFP-Rap1 was dependent on GTP binding, and GFP-Rap1 was rapidly up-regulated on this compartment in response to mitogens, a process blocked by inhibitors of endosome recycling. A novel fluorescent probe for GTP-bound Rap1 revealed that this GTPase was transiently activated only on the PM of both fibroblasts and T cells. Activation on the PM was blocked by inhibitors of endosome recycling. Moreover, inhibition of endosome recycling blocked the ability of Rap1 to promote integrin-mediated adhesion of T cells. Thus, unlike Ras, the membrane localizations of Rap1 are dynamically regulated, and the PM is the principle platform from which Rap1 signaling emanates. These observations may explain some of the biological differences between these GTPases.


The Lancet | 2013

Genetics and biomarkers in personalisation of lung cancer treatment

Rafael Rosell; Trever G. Bivona; Niki Karachaliou

Non-small-cell lung cancer is often diagnosed at the metastatic stage, with median survival of just 1 year. The identification of driver mutations in the epidermal growth factor receptor (EGFR) as the primary oncogenic event in a subset of lung adenocarcinomas led to a model of targeted treatment and genetic profiling of the disease. EGFR tyrosine kinase inhibitors confer remission in 60% of patients, but responses are short-lived. The pre-existing EGFR Thr790Met mutation could be a subclonal driver responsible for these transient responses. Overexpression of AXL and reduced MED12 function are hallmarks of resistance to tyrosine kinase inhibitors in EGFR-mutant non-small-cell lung cancer. Crosstalk between signalling pathways is another mechanism of resistance; therefore, identification of the molecular components involved could lead to the development of combination therapies cotargeting these molecules instead of EGFR tyrosine kinase inhibitor monotherapy. Additionally, novel biomarkers could be identified through deep sequencing analysis of serial rebiopsies before and during treatment.


Nature Genetics | 2015

The Hippo effector YAP promotes resistance to RAF- and MEK-targeted cancer therapies

Luping Lin; Amit J. Sabnis; Elton Chan; Victor Olivas; Lindsay Cade; Evangelos Pazarentzos; Saurabh Asthana; Dana S. Neel; Jenny Jiacheng Yan; Xinyuan Lu; Luu Pham; Mingxue M Wang; Niki Karachaliou; Maria Gonzalez Cao; Jose Luis Manzano; Jose Miguel Sanchez Torres; Fiamma Buttitta; Charles M. Rudin; Eric A. Collisson; Alain Patrick Algazi; Eric Michael Robinson; Iman Osman; Eva Muñoz-Couselo; Javier Cortes; Dennie T. Frederick; Zachary A. Cooper; Martin McMahon; Antonio Marchetti; Rafael Rosell; Keith T. Flaherty

Resistance to RAF- and MEK-targeted therapy is a major clinical challenge. RAF and MEK inhibitors are initially but only transiently effective in some but not all patients with BRAF gene mutation and are largely ineffective in those with RAS gene mutation because of resistance. Through a genetic screen in BRAF-mutant tumor cells, we show that the Hippo pathway effector YAP (encoded by YAP1) acts as a parallel survival input to promote resistance to RAF and MEK inhibitor therapy. Combined YAP and RAF or MEK inhibition was synthetically lethal not only in several BRAF-mutant tumor types but also in RAS-mutant tumors. Increased YAP in tumors harboring BRAF V600E was a biomarker of worse initial response to RAF and MEK inhibition in patients, establishing the clinical relevance of our findings. Our data identify YAP as a new mechanism of resistance to RAF- and MEK-targeted therapy. The findings unveil the synthetic lethality of combined suppression of YAP and RAF or MEK as a promising strategy to enhance treatment response and patient survival.

Collaboration


Dive into the Trever G. Bivona's collaboration.

Top Co-Authors

Avatar

Rafael Rosell

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Victor Olivas

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Niki Karachaliou

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

Luping Lin

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Amit J. Sabnis

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge