Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Saverio Marchi is active.

Publication


Featured researches published by Saverio Marchi.


Biochimica et Biophysica Acta | 2009

Ca2+ transfer from the ER to mitochondria: when, how and why

Rosario Rizzuto; Saverio Marchi; Massimo Bonora; Paola Aguiari; Angela Bononi; Diego De Stefani; Carlotta Giorgi; Sara Leo; Alessandro Rimessi; Roberta Siviero; Erika Zecchini; Paolo Pinton

The heterogenous subcellular distribution of a wide array of channels, pumps and exchangers allows extracellular stimuli to induce increases in cytoplasmic Ca(2+) concentration ([Ca(2+)]c) with highly defined spatial and temporal patterns, that in turn induce specific cellular responses (e.g. contraction, secretion, proliferation or cell death). In this extreme complexity, the role of mitochondria was considered marginal, till the direct measurement with targeted indicators allowed to appreciate that rapid and large increases of the [Ca(2+)] in the mitochondrial matrix ([Ca(2+)]m) invariably follow the cytosolic rises. Given the low affinity of the mitochondrial Ca(2+) transporters, the close proximity to the endoplasmic reticulum (ER) Ca(2+)-releasing channels was shown to be responsible for the prompt responsiveness of mitochondria. In this review, we will summarize the current knowledge of: i) the mitochondrial and ER Ca(2+) channels mediating the ion transfer, ii) the structural and molecular foundations of the signaling contacts between the two organelles, iii) the functional consequences of the [Ca(2+)]m increases, and iv) the effects of oncogene-mediated signals on mitochondrial Ca(2+) homeostasis. Despite the rapid progress carried out in the latest years, a deeper molecular understanding is still needed to unlock the secrets of Ca(2+) signaling machinery.


Journal of Signal Transduction | 2012

Mitochondria-ros crosstalk in the control of cell death and aging.

Saverio Marchi; Carlotta Giorgi; Jan M. Suski; Chiara Agnoletto; Angela Bononi; Massimo Bonora; Elena De Marchi; Sonia Missiroli; Simone Patergnani; Federica Poletti; Alessandro Rimessi; Jerzy Duszyński; Mariusz R. Wieckowski; Paolo Pinton

Reactive oxygen species (ROS) are highly reactive molecules, mainly generated inside mitochondria that can oxidize DNA, proteins, and lipids. At physiological levels, ROS function as “redox messengers” in intracellular signalling and regulation, whereas excess ROS induce cell death by promoting the intrinsic apoptotic pathway. Recent work has pointed to a further role of ROS in activation of autophagy and their importance in the regulation of aging. This review will focus on mitochondria as producers and targets of ROS and will summarize different proteins that modulate the redox state of the cell. Moreover, the involvement of ROS and mitochondria in different molecular pathways controlling lifespan will be reported, pointing out the role of ROS as a “balance of power,” directing the cell towards life or death.


Cell Cycle | 2013

Role of the c subunit of the FO ATP synthase in mitochondrial permeability transition

Massimo Bonora; Angela Bononi; Elena De Marchi; Carlotta Giorgi; Magdalena Lebiedzinska; Saverio Marchi; Simone Patergnani; Alessandro Rimessi; Jan M. Suski; Aleksandra Wojtala; Mariusz R. Wieckowski; Guido Kroemer; Lorenzo Galluzzi; Paolo Pinton

The term “mitochondrial permeability transition” (MPT) refers to an abrupt increase in the permeability of the inner mitochondrial membrane to low molecular weight solutes. Due to osmotic forces, MPT is paralleled by a massive influx of water into the mitochondrial matrix, eventually leading to the structural collapse of the organelle. Thus, MPT can initiate mitochondrial outer membrane permeabilization (MOMP), promoting the activation of the apoptotic caspase cascade as well as of caspase-independent cell death mechanisms. MPT appears to be mediated by the opening of the so-called “permeability transition pore complex” (PTPC), a poorly characterized and versatile supramolecular entity assembled at the junctions between the inner and outer mitochondrial membranes. In spite of considerable experimental efforts, the precise molecular composition of the PTPC remains obscure and only one of its constituents, cyclophilin D (CYPD), has been ascribed with a crucial role in the regulation of cell death. Conversely, the results of genetic experiments indicate that other major components of the PTPC, such as voltage-dependent anion channel (VDAC) and adenine nucleotide translocase (ANT), are dispensable for MPT-driven MOMP. Here, we demonstrate that the c subunit of the FO ATP synthase is required for MPT, mitochondrial fragmentation and cell death as induced by cytosolic calcium overload and oxidative stress in both glycolytic and respiratory cell models. Our results strongly suggest that, similar to CYPD, the c subunit of the FO ATP synthase constitutes a critical component of the PTPC.


Cell Calcium | 2012

Mitochondrial Ca2+ and apoptosis

Carlotta Giorgi; Federica Baldassari; Angela Bononi; Massimo Bonora; Elena De Marchi; Saverio Marchi; Sonia Missiroli; Simone Patergnani; Alessandro Rimessi; Jan M. Suski; Mariusz R. Wieckowski; Paolo Pinton

Mitochondria are key decoding stations of the apoptotic process. In support of this view, a large body of experimental evidence has unambiguously revealed that, in addition to the well-established function of producing most of the cellular ATP, mitochondria play a fundamental role in triggering apoptotic cell death. Various apoptotic stimuli cause the release of specific mitochondrial pro-apoptotic factors into the cytosol. The molecular mechanism of this release is still controversial, but there is no doubt that mitochondrial calcium (Ca2+) overload is one of the pro-apoptotic ways to induce the swelling of mitochondria, with perturbation or rupture of the outer membrane, and in turn the release of mitochondrial apoptotic factors into the cytosol. Here, we review as different proteins that participate in mitochondrial Ca2+ homeostasis and in turn modulate the effectiveness of Ca2+-dependent apoptotic stimuli. Strikingly, the final outcome at the cellular level is similar, albeit through completely different molecular mechanisms: a reduced mitochondrial Ca2+ overload upon pro-apoptotic stimuli that dramatically blunts the apoptotic response.


Cell Communication and Signaling | 2011

Calcium signaling around Mitochondria Associated Membranes (MAMs)

Simone Patergnani; Jan M. Suski; Chiara Agnoletto; Angela Bononi; Massimo Bonora; Elena De Marchi; Carlotta Giorgi; Saverio Marchi; Sonia Missiroli; Federica Poletti; Alessandro Rimessi; Jerzy Duszyński; Mariusz R. Wieckowski; Paolo Pinton

Calcium (Ca2+) homeostasis is fundamental for cell metabolism, proliferation, differentiation, and cell death. Elevation in intracellular Ca2+ concentration is dependent either on Ca2+ influx from the extracellular space through the plasma membrane, or on Ca2+ release from intracellular Ca2+ stores, such as the endoplasmic/sarcoplasmic reticulum (ER/SR). Mitochondria are also major components of calcium signalling, capable of modulating both the amplitude and the spatio-temporal patterns of Ca2+ signals. Recent studies revealed zones of close contact between the ER and mitochondria called MAMs (Mitochondria Associated Membranes) crucial for a correct communication between the two organelles, including the selective transmission of physiological and pathological Ca2+ signals from the ER to mitochondria. In this review, we summarize the most up-to-date findings on the modulation of intracellular Ca2+ release and Ca2+ uptake mechanisms. We also explore the tight interplay between ER- and mitochondria-mediated Ca2+ signalling, covering the structural and molecular properties of the zones of close contact between these two networks.


The Journal of Physiology | 2014

The mitochondrial calcium uniporter complex: molecular components, structure and physiopathological implications

Saverio Marchi; Paolo Pinton

Although it has long been known that mitochondria take up Ca2+, the molecular identities of the channels and transporters involved in this process were revealed only recently. Here, we discuss the recent work that has led to the characterization of the mitochondrial calcium uniporter complex, which includes the channel‐forming subunit MCU (mitochondrial calcium uniporter) and its regulators MICU1, MICU2, MCUb, EMRE, MCUR1 and miR‐25. We review not only the biochemical identities and structures of the proteins required for mitochondrial Ca2+ uptake but also their implications in different physiopathological contexts.


Enzyme Research | 2011

Protein Kinases and Phosphatases in the Control of Cell Fate

Angela Bononi; Chiara Agnoletto; Elena De Marchi; Saverio Marchi; Simone Patergnani; Massimo Bonora; Carlotta Giorgi; Sonia Missiroli; Federica Poletti; Alessandro Rimessi; Paolo Pinton

Protein phosphorylation controls many aspects of cell fate and is often deregulated in pathological conditions. Several recent findings have provided an intriguing insight into the spatial regulation of protein phosphorylation across different subcellular compartments and how this can be finely orchestrated by specific kinases and phosphatases. In this review, the focus will be placed on (i) the phosphoinositide 3-kinase (PI3K) pathway, specifically on the kinases Akt and mTOR and on the phosphatases PP2a and PTEN, and on (ii) the PKC family of serine/threonine kinases. We will look at general aspects of cell physiology controlled by these kinases and phosphatases, highlighting the signalling pathways that drive cell division, proliferation, and apoptosis.


Cell Death & Differentiation | 2013

Identification of PTEN at the ER and MAMs and its regulation of Ca(2+) signaling and apoptosis in a protein phosphatase-dependent manner.

Angela Bononi; Massimo Bonora; Saverio Marchi; Sonia Missiroli; Federica Poletti; Carlotta Giorgi; Pier Paolo Pandolfi; Paolo Pinton

The tumor suppressor activity of PTEN (phosphatase and tensin homolog deleted on chromosome 10) is thought to be largely attributable to its lipid phosphatase activity. PTEN dephosphorylates the lipid second messenger phosphatidylinositol 3,4,5-trisphosphate to directly antagonize the phosphoinositide 3-kinase-Akt pathway and prevent the activating phosphorylation of Akt. PTEN has also other proposed mechanisms of action, including a poorly characterized protein phosphatase activity, protein–protein interactions, as well as emerging functions in different compartment of the cells such as nucleus and mitochondria. We show here that a fraction of PTEN protein localizes to the endoplasmic reticulum (ER) and mitochondria-associated membranes (MAMs), signaling domains involved in calcium (2+) transfer from the ER to mitochondria and apoptosis induction. We demonstrate that PTEN silencing impairs ER Ca2+ release, lowers cytosolic and mitochondrial Ca2+ transients and decreases cellular sensitivity to Ca2+-mediated apoptotic stimulation. Specific targeting of PTEN to the ER is sufficient to enhance ER-to-mitochondria Ca2+ transfer and sensitivity to apoptosis. PTEN localization at the ER is further increased during Ca2+-dependent apoptosis induction. Importantly, PTEN interacts with the inositol 1,4,5-trisphosphate receptors (IP3Rs) and this correlates with the reduction in their phosphorylation and increased Ca2+ release. We propose that ER-localized PTEN regulates Ca2+ release from the ER in a protein phosphatase-dependent manner that counteracts Akt-mediated reduction in Ca2+ release via IP3Rs. These findings provide new insights into the mechanisms and the extent of PTEN tumor-suppressive functions, highlighting new potential strategies for therapeutic intervention.


Current Biology | 2013

Downregulation of the Mitochondrial Calcium Uniporter by Cancer-Related miR-25

Saverio Marchi; Laura Lupini; Simone Patergnani; Alessandro Rimessi; Sonia Missiroli; Massimo Bonora; Angela Bononi; Fabio Corrà; Carlotta Giorgi; Elena De Marchi; Federica Poletti; Roberta Gafà; Giovanni Lanza; Massimo Negrini; Rosario Rizzuto; Paolo Pinton

Summary The recently discovered mitochondrial calcium uniporter (MCU) promotes Ca2+ accumulation into the mitochondrial matrix [1, 2]. We identified in silico miR-25 as a cancer-related MCU-targeting microRNA family and demonstrate that its overexpression in HeLa cells drastically reduces MCU levels and mitochondrial Ca2+ uptake, while leaving other mitochondrial parameters and cytosolic Ca2+ signals unaffected. In human colon cancers and cancer-derived cells, miR-25 is overexpressed and MCU accordingly silenced. miR-25-dependent reduction of mitochondrial Ca2+ uptake correlates with resistance to apoptotic challenges and can be reversed by anti-miR-25 overexpression. Overall, the data demonstrate that microRNA targeting of mitochondrial Ca2+ signaling favors cancer cell survival, thus providing mechanistic insight into the role of mitochondria in tumorigenesis and identifying a novel therapeutic target in neoplasia.


Antioxidants & Redox Signaling | 2010

Redox control of protein kinase C: cell- and disease-specific aspects.

Carlotta Giorgi; Chiara Agnoletto; Claudio Baldini; Angela Bononi; Massimo Bonora; Saverio Marchi; Sonia Missiroli; Simone Patergnani; Federica Poletti; Alessandro Rimessi; Barbara Zavan; Paolo Pinton

Hormones, growth factors, electrical stimulation, and cell-cell interactions regulate numerous cellular processes by altering the levels of second messengers, thus influencing biochemical reactions inside the cells. The Protein Kinase C family (PKCs) is a group of serine/threonine kinases that are dependent on calcium (Ca(2+)), diacylglycerol, and phospholipids. Signaling pathways that induce variations on the levels of PKC activators have been implicated in the regulation of diverse cellular functions and, in turn, PKCs are key regulators of a plethora of cellular processes, including proliferation, differentiation, and tumorigenesis. Importantly, PKCs contain regions, both in the N-terminal regulatory domain and in the C-terminal catalytic domain, that are susceptible to redox modifications. In several pathophysiological conditions when the balance between oxidants, antioxidants, and alkylants is compromised, cells undergo redox stress. PKCs are cell-signaling proteins that are particularly sensitive to redox stress because modification of their redox-sensitive regions interferes with their activity and, thus, with their biological effects. In this review, we summarize the involvement of PKCs in health and disease and the importance of redox signaling in the regulation of this family of kinases.

Collaboration


Dive into the Saverio Marchi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mariusz R. Wieckowski

Nencki Institute of Experimental Biology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge