Sayan Bagchi
Stanford University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sayan Bagchi.
Science | 2014
Stephen D. Fried; Sayan Bagchi; Steven G. Boxer
Enzymes use protein architecture to impose specific electrostatic fields onto their bound substrates, but the magnitude and catalytic effect of these electric fields have proven difficult to quantify with standard experimental approaches. Using vibrational Stark effect spectroscopy, we found that the active site of the enzyme ketosteroid isomerase (KSI) exerts an extremely large electric field onto the C=O chemical bond that undergoes a charge rearrangement in KSI’s rate-determining step. Moreover, we found that the magnitude of the electric field exerted by the active site strongly correlates with the enzyme’s catalytic rate enhancement, enabling us to quantify the fraction of the catalytic effect that is electrostatic in origin. The measurements described here may help explain the role of electrostatics in many other enzymes and biomolecular systems. Vibrational spectroscopy pinpoints a surprisingly large local electric field where an enzyme binds its substrate. [Also see Perspective by Hildebrandt] Stark influence on reaction rates Enzymes accelerate chemical processes by coaxing molecules into just the right reactive states. Fried et al. now elucidate the way the enzyme ketosteroid isomerase pushes its substrate toward product through exertion of a local electric field (see the Perspective by Hildebrandt). First the authors calibrated the shifts in molecular vibrational frequencies, known as Stark shifts, that fields of varying strength impose on a substrate analog; then they measured the vibrational spectrum of that compound in the enzymes active site. The experiment uncovered an unusually strong field that the local enzyme structure directed to the precise spot where the substrate would react. Science, this issue p. 1510; see also p. 1456
Journal of Physical Chemistry B | 2012
Sayan Bagchi; Steven G. Boxer; M. D. Fayer
A nitrile-labeled amino acid, p-cyanophenylalanine, is introduced near the active site of the semisynthetic enzyme ribonuclease S to serve as a probe of protein dynamics and fluctuations. Ribonuclease S is the limited proteolysis product of subtilisin acting on ribonuclease A, and consists of a small fragment including amino acids 1-20, the S-peptide, and a larger fragment including residues 21-124, the S-protein. A series of two-dimensional vibrational echo experiments performed on the nitrile-labeled S-peptide and the RNase S are described. The time-dependent changes in the two-dimensional infrared vibrational echo line shapes are analyzed using the center line slope method to obtain the frequency-frequency correlation function (FFCF). The observations show that the nitrile probe in the S-peptide has dynamics that are similar to, but faster than, those of the single amino acid p-cyanophenylalanine in water. In contrast, the dynamics of the nitrile label when the peptide is bound to form ribonuclease S are dominated by homogeneous dephasing (motionally narrowed) contributions with only a small contribution from very fast inhomogeneous structural dynamics. The results provide insights into the nature of the structural dynamics of the ribonuclease S complex. The equilibrium dynamics of the nitrile labeled S-peptide and the ribonuclease S complex are also investigated by molecular dynamics simulations. The experimentally determined FFCFs are compared to the FFCFs obtained from the molecular dynamics simulations, thereby testing the capacity of simulations to determine the amplitudes and time scales of protein structural fluctuations on fast time scales under thermal equilibrium conditions.
Journal of the American Chemical Society | 2013
Stephen D. Fried; Sayan Bagchi; Steven G. Boxer
Vibrational probes can provide a direct readout of the local electrostatic field in complex molecular environments, such as protein binding sites and enzyme active sites. This information provides an experimental method to explore the underlying physical causes of important biomolecular processes such as binding and catalysis. However, specific chemical interactions such as hydrogen bonds can have complicated effects on vibrational probes and confound simple electrostatic interpretations of their frequency shifts. We employ vibrational Stark spectroscopy along with infrared spectroscopy of carbonyl probes in different solvent environments and in ribonuclease S to understand the sensitivity of carbonyl frequencies to electrostatic fields, including those due to hydrogen bonds. Additionally, we carried out molecular dynamics simulations to calculate ensemble-averaged electric fields in solvents and in ribonuclease S and found excellent correlation between calculated fields and vibrational frequencies. These data enabled the construction of a robust field-frequency calibration curve for the C═O vibration. The present results suggest that carbonyl probes are capable of quantitatively assessing the electrostatics of hydrogen bonding, making them promising for future study of protein function.
Journal of the American Chemical Society | 2012
Sayan Bagchi; Stephen D. Fried; Steven G. Boxer
Electrostatic interactions provide a primary connection between a proteins three-dimensional structure and its function. Infrared probes are useful because vibrational frequencies of certain chemical groups, such as nitriles, are linearly sensitive to local electrostatic field and can serve as a molecular electric field meter. IR spectroscopy has been used to study electrostatic changes or fluctuations in proteins, but measured peak frequencies have not been previously mapped to total electric fields, because of the absence of a field-frequency calibration and the complication of local chemical effects such as H-bonds. We report a solvatochromic model that provides a means to assess the H-bonding status of aromatic nitrile vibrational probes and calibrates their vibrational frequencies to electrostatic field. The analysis involves correlations between the nitriles IR frequency and its (13)C chemical shift, whose observation is facilitated by a robust method for introducing isotopes into aromatic nitriles. The method is tested on the model protein ribonuclease S (RNase S) containing a labeled p-CN-Phe near the active site. Comparison of the measurements in RNase S against solvatochromic data gives an estimate of the average total electrostatic field at this location. The value determined agrees quantitatively with molecular dynamics simulations, suggesting broader potential for the use of IR probes in the study of protein electrostatics.
Journal of Physical Chemistry B | 2009
Sayan Bagchi; Cyril Falvo; Shaul Mukamel; Robin M. Hochstrasser
The carboxylate side chains of Asp and Glu have significant coupling with the amide states of the backbone of the Villin headpiece. In two-dimensional spectroscopy, cross peaks are observed between these side chains and the main amide-I band. To model the absorption of the side chains, the electric field variations of vibrational frequencies of a carboxylic acid group (neutral form, CH(3)-COOH) and a carboxylate group (ionized form, CH(3)-COO(-)) are parametrized by means of density functional theory calculations. Simulations indicate that the side chains significantly couple to only one or two amide-I modes out of all of the amino acid residues which makes them useful as spectroscopic markers, providing information about the local structural behavior of the protein. Both experiment and simulations show that the cross peaks between the carboxylate and the amide-I bands are significantly diminished above the melting temperature.
Journal of the American Chemical Society | 2010
Sayan Bagchi; Benjamin T. Nebgen; Roger F. Loring; M. D. Fayer
Myoglobin (Mb) double mutant T67R/S92D displays peroxidase enzymatic activity in contrast to the wild type protein. The CO adduct of T67R/S92D shows two CO absorption bands corresponding to the A(1) and A(3) substates. The equilibrium protein dynamics for the two distinct substates of the Mb double mutant are investigated by using two-dimensional infrared (2D IR) vibrational echo spectroscopy and molecular dynamics (MD) simulations. The time-dependent changes in the 2D IR vibrational echo line shapes for both of the substates are analyzed using the center line slope (CLS) method to obtain the frequency-frequency correlation function (FFCF). The results for the double mutant are compared to those from the wild type Mb. The experimentally determined FFCF is compared to the FFCF obtained from molecular dynamics simulations, thereby testing the capacity of a force field to determine the amplitudes and time scales of protein structural fluctuations on fast time scales. The results provide insights into the nature of the energy landscape around the free energy minimum of the folded protein structure.
Journal of Physical Chemistry B | 2010
Sayan Bagchi; Dayton G. Thorpe; Ian F. Thorpe; Gregory A. Voth; M. D. Fayer
Myoglobin is an important protein for the study of structure and dynamics. Three conformational substates have been identified for the carbonmonoxy form of myoglobin (MbCO). These are manifested as distinct peaks in the IR absorption spectrum of the CO stretching mode. Ultrafast 2D IR vibrational echo chemical exchange experiments are used to observed switching between two of these substates, A(1) and A(3), on a time scale of <100 ps for two mutants of wild-type Mb. The two mutants are a single mutation of Mb, L29I, and a double mutation, T67R/S92D. Molecular dynamics (MD) simulations are used to model the structural differences between the substates of the two MbCO mutants. The MD simulations are also employed to examine the substate switching in the two mutants as a test of the ability of MD simulations to predict protein dynamics correctly for a system in which there is a well-defined transition over a significant potential barrier between two substates. For one mutant, L29I, the simulations show that translation of the His64 backbone may differentiate the two substates. The simulations accurately reproduce the experimentally observed interconversion time for the L29I mutant. However, MD simulations exploring the same His64 backbone coordinate fail to display substate interconversion for the other mutant, T67R/S92D, thus pointing to the likely complexity of the underlying protein interactions. We anticipate that understanding conformational dynamics in MbCO via ultrafast 2D IR vibrational echo chemical exchange experiments can help to elucidate fast conformational switching processes in other proteins.
Journal of Physical Chemistry B | 2016
Pranab Deb; Tapas Haldar; Somnath M. Kashid; Subhrashis Banerjee; Suman Chakrabarty; Sayan Bagchi
Noncovalent interactions, in particular the hydrogen bonds and nonspecific long-range electrostatic interactions are fundamental to biomolecular functions. A molecular understanding of the local electrostatic environment, consistently for both specific (hydrogen-bonding) and nonspecific electrostatic (local polarity) interactions, is essential for a detailed understanding of these processes. Vibrational Stark Effect (VSE) has proven to be an extremely useful method to measure the local electric field using infrared spectroscopy of carbonyl and nitrile based probes. The nitrile chemical group would be an ideal choice because of its absorption in an infrared spectral window transparent to biomolecules, ease of site-specific incorporation into proteins, and common occurrence as a substituent in various drug molecules. However, the inability of VSE to describe the dependence of IR frequency on electric field for hydrogen-bonded nitriles to date has severely limited nitriles utility to probe the noncovalent interactions. In this work, using infrared spectroscopy and atomistic molecular dynamics simulations, we have reported for the first time a linear correlation between nitrile frequencies and electric fields in a wide range of hydrogen-bonding environments that may bridge the existing gap between VSE and H-bonding interactions. We have demonstrated the robustness of this field-frequency correlation for both aromatic nitriles and sulfur-based nitriles in a wide range of molecules of varying size and compactness, including small molecules in complex solvation environments, an amino acid, disordered peptides, and structured proteins. This correlation, when coupled to VSE, can be used to quantify noncovalent interactions, specific or nonspecific, in a consistent manner.
Journal of Physical Chemistry Letters | 2014
Somnath M. Kashid; Sayan Bagchi
Hydrogen-bonding plays a fundamental role in the structure, function, and dynamics of various chemical and biological systems. Understanding the physical nature of interactions and the role of electrostatics in hydrogen-bonding has been the focus of several theoretical and computational research. We present an experimental approach involving IR-(13)C NMR correlations to determine the electrostatic nature of carbonyl hydrogen-bonding interactions. This report provides a direct experimental evidence of the classical nature of hydrogen-bonding interaction in carbonyls, independent of any theoretical approximation. These results have important implications in chemistry and biology and can be applied to probe the reaction mechanisms involving carbonyl activation/stabilization by hydrogen bonds using spectroscopic techniques.
Journal of Physical Chemistry B | 2015
Somnath M. Kashid; Geun Young Jin; Sayan Bagchi; Yung Sam Kim
Cosolvents strongly influence the solute-solvent interactions of biomolecules in aqueous environments and have profound effects on the stability and activity of several proteins and enzymes. Experimental studies have previously reported on the hydrogen-bond dynamics of water molecules in the presence of a cosolvent, but understanding the effects from a solutes perspective could provide greater insight into protein stability. Because carbonyl groups are abundant in biomolecules, the current study used 2D IR spectroscopy and molecular dynamics simulations to compare the hydrogen-bond dynamics of the solutes carbonyl group in aqueous solution, with and without the presence of DMSO as a cosolvent. 2D IR spectroscopy was used to quantitatively estimate the time scales of the hydrogen-bond dynamics of the carbonyl group in neat water and 1:1 DMSO/water solution. The 2D IR results show spectral signatures of a chemical exchange process: The presence of the cosolvent was found to lower the hydrogen-bond exchange rate by a factor of 5. The measured exchange rates were 7.50 × 10(11) and 1.48 × 10(11) s(-1) in neat water and 1:1 DMSO/water, respectively. Molecular dynamics simulations predict a significantly shorter carbonyl hydrogen-bond lifetime in neat water than in 1:1 DMSO/water and provide molecular insights into the exchange mechanism. The binding of the cosolvent to the solute was found to be accompanied by the release of hydrogen-bonded water molecules to the bulk. The widely different hydrogen-bond lifetimes and exchange rates with and without DMSO indicate a significant change in the ultrafast hydrogen-bond dynamics in the presence of a cosolvent, which, in turn, might play an important role in the stability and activity of biomolecules.