Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stephen D. Fried is active.

Publication


Featured researches published by Stephen D. Fried.


Science | 2014

Extreme electric fields power catalysis in the active site of ketosteroid isomerase

Stephen D. Fried; Sayan Bagchi; Steven G. Boxer

Enzymes use protein architecture to impose specific electrostatic fields onto their bound substrates, but the magnitude and catalytic effect of these electric fields have proven difficult to quantify with standard experimental approaches. Using vibrational Stark effect spectroscopy, we found that the active site of the enzyme ketosteroid isomerase (KSI) exerts an extremely large electric field onto the C=O chemical bond that undergoes a charge rearrangement in KSI’s rate-determining step. Moreover, we found that the magnitude of the electric field exerted by the active site strongly correlates with the enzyme’s catalytic rate enhancement, enabling us to quantify the fraction of the catalytic effect that is electrostatic in origin. The measurements described here may help explain the role of electrostatics in many other enzymes and biomolecular systems. Vibrational spectroscopy pinpoints a surprisingly large local electric field where an enzyme binds its substrate. [Also see Perspective by Hildebrandt] Stark influence on reaction rates Enzymes accelerate chemical processes by coaxing molecules into just the right reactive states. Fried et al. now elucidate the way the enzyme ketosteroid isomerase pushes its substrate toward product through exertion of a local electric field (see the Perspective by Hildebrandt). First the authors calibrated the shifts in molecular vibrational frequencies, known as Stark shifts, that fields of varying strength impose on a substrate analog; then they measured the vibrational spectrum of that compound in the enzymes active site. The experiment uncovered an unusually strong field that the local enzyme structure directed to the precise spot where the substrate would react. Science, this issue p. 1510; see also p. 1456


Accounts of Chemical Research | 2015

Measuring electric fields and noncovalent interactions using the vibrational stark effect.

Stephen D. Fried; Steven G. Boxer

Over the past decade, we have developed a spectroscopic approach to measure electric fields inside matter with high spatial (<1 Å) and field (<1 MV/cm) resolution. The approach hinges on exploiting a physical phenomenon known as the vibrational Stark effect (VSE), which ultimately provides a direct mapping between observed vibrational frequencies and electric fields. Therefore, the frequency of a vibrational probe encodes information about the local electric field in the vicinity around the probe. The VSE method has enabled us to understand in great detail the underlying physical nature of several important biomolecular phenomena, such as drug-receptor selectivity in tyrosine kinases, catalysis by the enzyme ketosteroid isomerase, and unidirectional electron transfer in the photosynthetic reaction center. Beyond these specific examples, the VSE has provided a conceptual foundation for how to model intermolecular (noncovalent) interactions in a quantitative, consistent, and general manner. The starting point for research in this area is to choose (or design) a vibrational probe to interrogate the particular system of interest. Vibrational probes are sometimes intrinsic to the system in question, but we have also devised ways to build them into the system (extrinsic probes), often with minimal perturbation. With modern instruments, vibrational frequencies can increasingly be recorded with very high spatial, temporal, and frequency resolution, affording electric field maps correspondingly resolved in space, time, and field magnitude. In this Account, we set out to explain the VSE in broad strokes to make its relevance accessible to chemists of all specialties. Our intention is not to provide an encyclopedic review of published work but rather to motivate the underlying framework of the methodology and to describe how we make and interpret the measurements. Using certain vibrational probes, benchmarked against computer models, it is possible to use the VSE to measure absolute electric fields in arbitrary environments. The VSE approach provides an organizing framework for thinking generally about intermolecular interactions in a quantitative way and may serve as a useful conceptual tool for molecular design.


Journal of the American Chemical Society | 2013

Measuring electrostatic fields in both hydrogen-bonding and non-hydrogen-bonding environments using carbonyl vibrational probes.

Stephen D. Fried; Sayan Bagchi; Steven G. Boxer

Vibrational probes can provide a direct readout of the local electrostatic field in complex molecular environments, such as protein binding sites and enzyme active sites. This information provides an experimental method to explore the underlying physical causes of important biomolecular processes such as binding and catalysis. However, specific chemical interactions such as hydrogen bonds can have complicated effects on vibrational probes and confound simple electrostatic interpretations of their frequency shifts. We employ vibrational Stark spectroscopy along with infrared spectroscopy of carbonyl probes in different solvent environments and in ribonuclease S to understand the sensitivity of carbonyl frequencies to electrostatic fields, including those due to hydrogen bonds. Additionally, we carried out molecular dynamics simulations to calculate ensemble-averaged electric fields in solvents and in ribonuclease S and found excellent correlation between calculated fields and vibrational frequencies. These data enabled the construction of a robust field-frequency calibration curve for the C═O vibration. The present results suggest that carbonyl probes are capable of quantitatively assessing the electrostatics of hydrogen bonding, making them promising for future study of protein function.


Journal of the American Chemical Society | 2012

A Solvatochromic Model Calibrates Nitriles’ Vibrational Frequencies to Electrostatic Fields

Sayan Bagchi; Stephen D. Fried; Steven G. Boxer

Electrostatic interactions provide a primary connection between a proteins three-dimensional structure and its function. Infrared probes are useful because vibrational frequencies of certain chemical groups, such as nitriles, are linearly sensitive to local electrostatic field and can serve as a molecular electric field meter. IR spectroscopy has been used to study electrostatic changes or fluctuations in proteins, but measured peak frequencies have not been previously mapped to total electric fields, because of the absence of a field-frequency calibration and the complication of local chemical effects such as H-bonds. We report a solvatochromic model that provides a means to assess the H-bonding status of aromatic nitrile vibrational probes and calibrates their vibrational frequencies to electrostatic field. The analysis involves correlations between the nitriles IR frequency and its (13)C chemical shift, whose observation is facilitated by a robust method for introducing isotopes into aromatic nitriles. The method is tested on the model protein ribonuclease S (RNase S) containing a labeled p-CN-Phe near the active site. Comparison of the measurements in RNase S against solvatochromic data gives an estimate of the average total electrostatic field at this location. The value determined agrees quantitatively with molecular dynamics simulations, suggesting broader potential for the use of IR probes in the study of protein electrostatics.


Journal of Physical Chemistry B | 2012

Solvent-Induced Infrared Frequency Shifts in Aromatic Nitriles Are Quantitatively Described by the Vibrational Stark Effect

Nicholas M. Levinson; Stephen D. Fried; Steven G. Boxer

The physical properties of solvents strongly affect the spectra of dissolved solutes, and this phenomenon can be exploited to gain insight into the solvent-solute interaction. The large solvatochromic shifts observed for many dye molecules in polar solvents are due to variations in the solvent reaction field, and these shifts are widely used to estimate the change in the dyes dipole moment upon photoexcitation, which is typically on the order of ∼1-10 D. In contrast, the change in dipole moment for vibrational transitions is approximately 2 orders of magnitude smaller. Nonetheless, vibrational chromophores display significant solvatochromism, and the relative contributions of specific chemical interactions and electrostatic interactions are debated, complicating the interpretation of vibrational frequency shifts in complex systems such as proteins. Here we present a series of substituted benzonitriles that display widely varying degrees of vibrational solvatochromism. In most cases, this variation can be quantitatively described by the experimentally determined Stark tuning rate, coupled with a simple Onsager-like model of solvation, reinforcing the view that vibrational frequency shifts are largely caused by electrostatic interactions. In addition, we discuss specific cases where continuum solvation models fail to predict solvatochromic shifts, revealing the necessity for more advanced theoretical models that capture local aspects of solute-solvent interactions.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Quantum delocalization of protons in the hydrogen-bond network of an enzyme active site

Lu Wang; Stephen D. Fried; Steven G. Boxer; Thomas E. Markland

Significance Because of the low mass of the proton, nuclear quantum effects can dramatically alter the properties of hydrogen-bond networks, especially when short and strong hydrogen bonds occur. Here, we combine experiments and state-of-the-art simulations that include the quantum nature of both the electrons and nuclei to show that the enzyme ketosteroid isomerase contains a hydrogen-bond network in its active site that facilitates extensive quantum proton delocalization. This leads to a 10,000-fold increase in the acidity of an active-site residue compared with the limit where the nuclei are classical particles. This work opens up new avenues for understanding the interplay between quantum effects and hydrogen bonding in biological systems containing strong hydrogen bonds. Enzymes use protein architectures to create highly specialized structural motifs that can greatly enhance the rates of complex chemical transformations. Here, we use experiments, combined with ab initio simulations that exactly include nuclear quantum effects, to show that a triad of strongly hydrogen-bonded tyrosine residues within the active site of the enzyme ketosteroid isomerase (KSI) facilitates quantum proton delocalization. This delocalization dramatically stabilizes the deprotonation of an active-site tyrosine residue, resulting in a very large isotope effect on its acidity. When an intermediate analog is docked, it is incorporated into the hydrogen-bond network, giving rise to extended quantum proton delocalization in the active site. These results shed light on the role of nuclear quantum effects in the hydrogen-bond network that stabilizes the reactive intermediate of KSI, and the behavior of protons in biological systems containing strong hydrogen bonds.


Journal of Physical Chemistry B | 2013

Calculations of the electric fields in liquid solutions.

Stephen D. Fried; Lee-Ping Wang; Steven G. Boxer; Pengyu Ren; Vijay S. Pande

The electric field created by a condensed-phase environment is a powerful and convenient descriptor for intermolecular interactions. Not only does it provide a unifying language to compare many different types of interactions, but it also possesses clear connections to experimental observables, such as vibrational Stark effects. We calculate here the electric fields experienced by a vibrational chromophore (the carbonyl group of acetophenone) in an array of solvents of diverse polarities using molecular dynamics simulations with the AMOEBA polarizable force field. The mean and variance of the calculated electric fields correlate well with solvent-induced frequency shifts and band broadening, suggesting Stark effects as the underlying mechanism of these key solution-phase spectral effects. Compared to fixed-charge and continuum models, AMOEBA was the only model examined that could describe nonpolar, polar, and hydrogen bonding environments in a consistent fashion. Nevertheless, we found that fixed-charge force fields and continuum models were able to replicate some results of the polarizable simulations accurately, allowing us to clearly identify which properties and situations require explicit polarization and/or atomistic representations to be modeled properly, and to identify for which properties and situations simpler models are sufficient. We also discuss the ramifications of these results for modeling electrostatics in complex environments, such as proteins.


Journal of Physical Chemistry B | 2014

Modeling Organochlorine Compounds and the σ-Hole Effect Using a Polarizable Multipole Force Field

Xiaojiao Mu; Qiantao Wang; Lee-Ping Wang; Stephen D. Fried; Jean Philip Piquemal; Kevin N. Dalby; Pengyu Ren

The charge distribution of halogen atoms on organochlorine compounds can be highly anisotropic and even display a so-called σ-hole, which leads to strong halogen bonds with electron donors. In this paper, we have systematically investigated a series of chloromethanes with one to four chloro substituents using a polarizable multipole-based molecular mechanics model. The atomic multipoles accurately reproduced the ab initio electrostatic potential around chloromethanes, including CCl4, which has a prominent σ-hole on the Cl atom. The van der Waals parameters for Cl were fitted to the experimental density and heat of vaporization. The calculated hydration free energy, solvent reaction fields, and interaction energies of several homo- and heterodimer of chloromethanes are in good agreement with experimental and ab initio data. This study suggests that sophisticated electrostatic models, such as polarizable atomic multipoles, are needed for accurate description of electrostatics in organochlorine compounds and halogen bonds, although further improvement is necessary for better transferability.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Quantitative dissection of hydrogen bond-mediated proton transfer in the ketosteroid isomerase active site.

Paul A. Sigala; Aaron T. Fafarman; Jason P. Schwans; Stephen D. Fried; Timothy D. Fenn; Jose M. M. Caaveiro; Brandon Pybus; Dagmar Ringe; Gregory A. Petsko; Steven G. Boxer; Daniel Herschlag

Significance Hydrogen bond networks play critical structural and functional roles in proteins but have been challenging to study within this complex environment. We incorporated spectroscopic probes into the active site of the bacterial enzyme ketosteroid isomerase to systematically dissect the proton transfer equilibrium within a key hydrogen bond network formed to bound transition state analogs. Our study provides direct insight into the physical and energetic properties of a hydrogen bond network within an enzyme and presents a simple computational model of electrostatic effects within this protein that succeeds due to detailed knowledge of ionization states and a tightly controlled experimental system. Hydrogen bond networks are key elements of protein structure and function but have been challenging to study within the complex protein environment. We have carried out in-depth interrogations of the proton transfer equilibrium within a hydrogen bond network formed to bound phenols in the active site of ketosteroid isomerase. We systematically varied the proton affinity of the phenol using differing electron-withdrawing substituents and incorporated site-specific NMR and IR probes to quantitatively map the proton and charge rearrangements within the network that accompany incremental increases in phenol proton affinity. The observed ionization changes were accurately described by a simple equilibrium proton transfer model that strongly suggests the intrinsic proton affinity of one of the Tyr residues in the network, Tyr16, does not remain constant but rather systematically increases due to weakening of the phenol–Tyr16 anion hydrogen bond with increasing phenol proton affinity. Using vibrational Stark spectroscopy, we quantified the electrostatic field changes within the surrounding active site that accompany these rearrangements within the network. We were able to model these changes accurately using continuum electrostatic calculations, suggesting a high degree of conformational restriction within the protein matrix. Our study affords direct insight into the physical and energetic properties of a hydrogen bond network within a protein interior and provides an example of a highly controlled system with minimal conformational rearrangements in which the observed physical changes can be accurately modeled by theoretical calculations.


Angewandte Chemie | 2015

Ribosome Subunit Stapling for Orthogonal Translation in E. coli

Stephen D. Fried; Wolfgang H. Schmied; Chayasith Uttamapinant; Jason W. Chin

The creation of orthogonal large and small ribosomal subunits, which interact with each other but not with endogenous ribosomal subunits, would extend our capacity to create new functions in the ribosome by making the large subunit evolvable. To this end, we rationally designed a ribosomal RNA that covalently links the ribosome subunits via an RNA staple. The stapled ribosome is directed to an orthogonal mRNA, allowing the introduction of mutations into the large subunit that reduce orthogonal translation, but have minimal effects on cell growth. Our approach provides a promising route towards orthogonal subunit association, which may enable the evolution of key functional centers in the large subunit, including the peptidyl-transferase center, for unnatural polymer synthesis in cells.

Collaboration


Dive into the Stephen D. Fried's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lee-Ping Wang

University of California

View shared research outputs
Top Co-Authors

Avatar

Lu Wang

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pengyu Ren

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jason W. Chin

Laboratory of Molecular Biology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge