Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Scot D. Rassat is active.

Publication


Featured researches published by Scot D. Rassat.


Separation and Purification Technology | 1999

Development of an electrically switched ion exchange process for selective ion separations

Scot D. Rassat; Johanes H. Sukamto; Rick J. Orth; Michael A. Lilga; Richard T. Hallen

The electrically switched ion exchange (ESIX) process, being developed at Pacific Northwest National Laboratory, provides an alternative separation method to selectively remove ions from process and waste streams. In the ESIX process, in which an electroactive ion exchange film is deposited onto a high surface area electrode, uptake and elution are controlled directly by modulating the electrochemical potential of the film. This paper addresses engineering issues necessary to fully develop ESIX for specific industrial alkali cation separation challenges. The cycling and chemical stability and alkali cation selectivity of nickel hexacyanoferrate (NiHCF) electroactive films were investigated. The selectivity of NiHCF was determined using cyclic voltammetry and a quartz crystal microbalance to quantify ion uptake in the film. Separation factors indicated a high selectivity for cesium and a moderate selectivity for potassium in high sodium content solutions. A NiHCF film with improved redox cycling and chemical stability in a simulated pulp mill process stream, a targeted application for ESIX, was also prepared and tested.


Separation and Purification Technology | 2001

Cesium Separation Using Electrically Switched Ion Exchange

Michael A. Lilga; Rick J. Orth; Johanes H. Sukamto; Scot D. Rassat; J.David Genders; Ram Gopal

Electrically switched ion exchange (ESIX) is a separation technology being developed at Pacific Northwest National Laboratory as an alternative to conventional ion exchange for removing metal ions from wastewater. In ESIX, which combines ion exchange and electrochemistry, ion uptake and elution can be controlled directly by modulating the potential of an ion exchange film that has been electrochemically deposited onto an electrode. This paper presents the results of experiments on high surface area electrodes and the development of a flow system for cesium ion separation. Bench-scale flow system studies showed no change in capacity or performance of the ESIX films at a flow rate up to 113 bed volumes/h (BV/h), the maximum flow rate tested, and breakthrough curves supported once-through waste processing. A comparison of results for a stacked five-electrode cell versus a single-electrode cell showed enhanced breakthrough performance. In the stacked configuration, breakthrough began at approximately 120 BV for a feed containing 0.2 ppm cesium at a flow rate of 13 BV/h. A case study for the KE Basin (a spent nuclear fuel storage basin) on the Hanford Site demonstrated that KE Basin wastewater could be processed continuously with minimal waste generation, reduced disposal costs, and lower capital expenditures.


Review of Scientific Instruments | 2008

Automated gas burette system for evolved hydrogen measurements.

Feng Zheng; Scot D. Rassat; David J. Helderandt; Dustin D. Caldwell; Christopher L. Aardahl; Tom Autrey; John C. Linehan; Kenneth G. Rappe

This paper reports a simple and efficient gas burette system that allows automated determination of evolved gas volume in real time using only temperature and pressure measurements. The system is reliable and has been used successfully to study the hydrogen release kinetics of ammonia borane thermolysis. The system is especially suitable for bench scale studies involving small batches and potentially rapid reaction kinetics.


Archive | 2009

Pretreatment Engineering Platform Phase 1 Final Test Report

Dean E. Kurath; Brady D. Hanson; Michael J. Minette; David L. Baldwin; Brian M. Rapko; Lenna A. Mahoney; Philip P. Schonewill; Richard C. Daniel; Paul W. Eslinger; James L. Huckaby; Justin M. Billing; Parameshwaran S. Sundar; Gary B. Josephson; James J. Toth; Satoru T. Yokuda; Ellen Bk Baer; Steven M. Barnes; Elizabeth C. Golovich; Scot D. Rassat; Christopher F. Brown; John Gh Geeting; Gary J. Sevigny; Amanda J. Casella; Jagannadha R. Bontha; Rosanne L. Aaberg; Pamela M. Aker; Consuelo E. Guzman-Leong; Marcia L. Kimura; S. K. Sundaram; Richard P. Pires

Pacific Northwest National Laboratory (PNNL) was tasked by Bechtel National Inc. (BNI) on the River Protection Project, Hanford Tank Waste Treatment and Immobilization Plant (RPP-WTP) project to conduct testing to demonstrate the performance of the WTP Pretreatment Facility (PTF) leaching and ultrafiltration processes at an engineering-scale. In addition to the demonstration, the testing was to address specific technical issues identified in Issue Response Plan for Implementation of External Flowsheet Review Team (EFRT) Recommendations - M12, Undemonstrated Leaching Processes.( ) Testing was conducted in a 1/4.5-scale mock-up of the PTF ultrafiltration system, the Pretreatment Engineering Platform (PEP). Parallel laboratory testing was conducted in various PNNL laboratories to allow direct comparison of process performance at an engineering-scale and a laboratory-scale. This report presents and discusses the results of those tests.


Journal of Fuel Cell Science and Technology | 2011

Systems Modeling of Chemical Hydride Hydrogen Storage Materials for Fuel Cell Applications

Kriston P. Brooks; Maruthi N. Devarakonda; Scot D. Rassat; Jamelyn D. Holladay

A fixed bed reactor was designed, modeled and simulated for hydrogen storage on-board the vehicle for PEM fuel cell applications. Ammonia Borane (AB) was selected by DOEs Hydrogen Storage Engineering Center of Excellence (HSECoE) as the initial chemical hydride of study because of its high hydrogen storage capacity (up to {approx}16% by weight for the release of {approx}2.5 molar equivalents of hydrogen gas) and its stability under typical ambient conditions. The design evaluated consisted of a tank with 8 thermally isolated sections in which H2 flows freely between sections to provide ballast. Heating elements are used to initiate reactions in each section when pressure drops below a specified level in the tank. Reactor models in Excel and COMSOL were developed to demonstrate the proof-of-concept, which was then used to develop systems models in Matlab/Simulink. Experiments and drive cycle simulations showed that the storage system meets thirteen 2010 DOE targets in entirety and the remaining four at greater than 60% of the target.


Other Information: PBD: 26 Jan 2000 | 2000

Dynamics of Crust Dissolution and Gas Release in Tank 241-SY-101

Scot D. Rassat; Charles W. Stewart; Beric E. Wells; William L. Kuhn; Zenen I. Antoniak; Judith M. Cuta; Kurtis P. Recknagle; Guillermo Terrones; Vilayanur V. Viswanathan; Johanes H. Sukamto; Donaldo P. Mendoza

Due primarily to an increase in floating crust thickness, the waste level in Tank 241-SY-101 has grown appreciably and the flammable gas volume stored in the crust has become a potential hazard. To remediate gas retention in the crust and the potential for buoyant displacement gas releases from the nonconvective layer at the bottom of the tank, SY-101 will be diluted to dissolve a large fraction of the solids that allow the waste to retain gas. The plan is to transfer some waste out and back-dilute with water in several steps. In this work, mechanisms and rates of waste solids dissolution and gas releases are evaluated theoretically and experimentally. Particular emphasis is given to crust dissolution processes and associated gas releases, although dissolution and gas release from the mixed-slurry and nonconvective layers are also considered. The release of hydrogen gas to the tank domespace is modeled for a number of scenarios. Under the tank conditions expected at the time of back-dilution, no plausible continuous or sudden gas release scenarios resulting in flammable hydrogen concentrations were identified.


Other Information: Supercedes report DE00003760; PBD: 23 Feb 1999 | 1999

A Discussion of SY-101 Crust Gas Retention and Release Mechanisms

Scot D. Rassat; Phillip A. Gauglitz; Stacie M. Caley; Lenna A. Mahoney; Donaldo P. Mendoza

The flammable gas hazard in Hanford waste tanks was made an issue by the behavior of double-shell Tank (DST) 241-SY-101 (SY-101). Shortly after SY-101 was filled in 1980, the waste level began rising periodically, due to the generation and retention of gases within the slurry, and then suddenly dropping as the gases were released. An intensive study of the tanks behavior revealed that these episodic releases posed a safety hazard because the released gas was flammable, and, in some cases, the volume of gas released was sufficient to exceed the lower flammability limit (LFL) in the tank headspace (Allemann et al. 1993). A mixer pump was installed in SY-101 in late 1993 to prevent gases from building up in the settled solids layer, and the large episodic gas releases have since ceased (Allemann et al. 1994; Stewart et al. 1994; Brewster et al. 1995). However, the surface level of SY-101 has been increasing since at least 1995, and in recent months the level growth has shown significant and unexpected acceleration. Based on a number of observations and measurements, including data from the void fraction instrument (VFI), we have concluded that the level growth is caused largely by increased gas retention in the floating crust. In September 1998, the crust contained between about 21 and 43% void based on VFI measurements (Stewart et al. 1998). Accordingly, it is important to understand the dominant mechanisms of gas retention, why the gas retention is increasing, and whether the accelerating level increase will continue, diminish or even reverse. It is expected that the retained gas in the crust is flammable, with hydrogen as a major constituent. This gas inventory would pose a flammable gas hazard if it were to release suddenly. In May 1997, the mechanisms of bubble retention and release from crust material were the subject of a workshop. The evaluation of the crust and potential hazards assumed a more typical void of roughly 15% gas. It could be similar to percolati on in single-shell tank (SST) waste forms. The much higher void being currently observed in SY-101 represents essentially a new crust configuration, and the mechanisms for sudden gas release need to be evaluated. The purpose of this study is to evaluate the situation of gas bubbles in crust based on the previous work on gas bubble retention, migration, and release in simulants and actual waste. We have also conducted some visual observations of bubble migration through simulated crusts to help understand the interaction of the various mechanisms.


Archive | 2008

Technical Basis of Scaling Relationships for the Pretreatment Engineering Platform

William L. Kuhn; Stuart T. Arm; James L. Huckaby; Dean E. Kurath; Scot D. Rassat

Pacific Northwest National Laboratory has been tasked by Bechtel National Inc. (BNI) on the River Protection Project-Waste Treatment Plant (RPP-WTP) project to perform research and development activities. The Pretreatment Engineering Platform (PEP) is being designed and constructed as part of a plan to respond to an issue raised by the WTP External Flowsheet Review Team (EFRT) entitled “Undemonstrated Leaching Processes” and numbered M12. The PEP replicates the WTP leaching process using prototypic equipment and control strategies. The approach for scaling PEP performance data to predict WTP performance is critical to the successful resolution of the EFRT issue. This report describes the recommended PEP scaling approach, PEP data interpretation and provides recommendations on test conduct and data requirements.


ECS Transactions, 33(1):1959 - 1972 | 2010

Dynamic Modeling and Simulation Based Analysis of an Ammonia Borane (AB) Reactor System for Hydrogen Storage

Maruthi N. Devarakonda; Jamelyn D. Holladay; Kriston P. Brooks; Scot D. Rassat; Darrell R. Herling

Research on ammonia borane (AB, NH3BH3) has shown it to be a promising material for chemical hydrogen storage in PEM fuel cell applications. AB was selected by DOE’s Hydrogen Storage Engineering Center of Excellence (HSECoE) as the initial chemical hydride of study because of its high hydrogen storage capacity (up to 19.6% by weight for the release of three molar equivalents of hydrogen gas) and its stability under typical ambient conditions. A model of a bead reactor system which includes feed and product tanks, hot and cold augers, a ballast tank/reactor, a H2 burner and a radiator was developed to study AB system performance in an automotive application and estimate the energy, mass, and volume requirements for this off-board regenerable hydrogen storage material. Preliminary system simulation results for a start-up case and for a transient drive cycle indicate appropriate trends in the reactor system dynamics. A new controller was developed and validated in simulation for a couple of H2 demand cases.


51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition | 2013

Demonstration of Critical Systems for Propellant Production on Mars for Science and Exploration Missions

Diane L. Linne; James R. Gaier; Joseph G. Zoeckler; John S. Kolacz; Robert S. Wegeng; Scot D. Rassat; D. Larry Clark

7A Mars hopper has been proposed as a Mars mobility concept that will also demonstrate and advance in-situ resource utilization. The components needed in a Mars propellant production plant have been developed to various levels of technology maturity, but there is little experience with the systems in a Mars environment. Two systems for the acquisition and compression of the thin carbon dioxide atmosphere were designed, assembled, and tested in a Mars environment chamber. A microchannel sorption pump system was able to raise the pressure from 7 Torr to 450 Torr or from 12 Torr to over 700 Torr in two stages. This data now provides information needed to make additional improvements in the sorption pump technology to increase performance, although a system-level analysis might prove that some amount of pre- or post-compression may be a preferred solution. A mini cryofreezer system was also evaluated as an alternative method for carbon dioxide acquisition and compression. Finally, an electrolysis system was tested and successfully demonstrated start-up operation and thermal stability of all components during long-term operation in the chamber.

Collaboration


Dive into the Scot D. Rassat's collaboration.

Top Co-Authors

Avatar

Kriston P. Brooks

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Lenna A. Mahoney

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Beric E. Wells

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Johanes H. Sukamto

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Maruthi N. Devarakonda

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Christopher L. Aardahl

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Jamelyn D. Holladay

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Michael A. Lilga

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Phillip A. Gauglitz

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Thomas Autrey

Pacific Northwest National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge