Scott A. Nichols
University of California, Berkeley
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Scott A. Nichols.
Nature | 2008
Nicole King; M. Jody Westbrook; Susan L. Young; Alan Kuo; Monika Abedin; Jarrod Chapman; Stephen R. Fairclough; Uffe Hellsten; Yoh Isogai; Ivica Letunic; Michael T. Marr; David Pincus; Nicholas Putnam; Antonis Rokas; Kevin J. Wright; Richard Zuzow; William Dirks; Matthew C. Good; David Goodstein; Derek Lemons; Wanqing Li; Jessica B. Lyons; Andrea Morris; Scott A. Nichols; Daniel J. Richter; Asaf Salamov; Jgi Sequencing; Peer Bork; Wendell A. Lim; Gerard Manning
Choanoflagellates are the closest known relatives of metazoans. To discover potential molecular mechanisms underlying the evolution of metazoan multicellularity, we sequenced and analysed the genome of the unicellular choanoflagellate Monosiga brevicollis. The genome contains approximately 9,200 intron-rich genes, including a number that encode cell adhesion and signalling protein domains that are otherwise restricted to metazoans. Here we show that the physical linkages among protein domains often differ between M. brevicollis and metazoans, suggesting that abundant domain shuffling followed the separation of the choanoflagellate and metazoan lineages. The completion of the M. brevicollis genome allows us to reconstruct with increasing resolution the genomic changes that accompanied the origin of metazoans.
Proceedings of the National Academy of Sciences of the United States of America | 2006
Scott A. Nichols; William Dirks; John S. Pearse; Nicole King
In stark contrast to the rapid morphological radiation of eumetazoans during the Cambrian explosion, the simple body plan of sponges (Phylum Porifera) emerged from the Cambrian relatively unchanged. Although the genetic and developmental underpinnings of these disparate evolutionary outcomes are unknown, comparisons between modern sponges and eumetazoans promise to reveal the extent to which critical genetic factors were present in their common ancestors. Two particularly interesting classes of genes in this respect are those involved in cell signaling and adhesion. These genes help guide development and morphogenesis in modern eumetazoans, but the timing and sequence of their origins is unknown. Here, we demonstrate that the sponge Oscarella carmela, one of the earliest branching animals, expresses core components of the Wnt, transforming growth factor β, receptor tyrosine kinase, Notch, Hedgehog, and Jak/Stat signaling pathways. Furthermore, we identify sponge homologs of nearly every major eumetazoan cell-adhesion gene family, including those that encode cell-surface receptors, cytoplasmic linkers, and extracellular-matrix proteins. From these data, we infer that key signaling and adhesion genes were in place early in animal evolution, before the divergence of sponge and eumetazoan lineages.
Proceedings of the National Academy of Sciences of the United States of America | 2002
Stein Erik Lid; Darren (Fred) Gruis; Rudolf Jung; Jennifer Ann Lorentzen; Evgueni V. Ananiev; Mark A. Chamberlin; Xiaomu Niu; Robert B. Meeley; Scott A. Nichols; Odd-Arne Olsen
Endosperm of cereal grains is one of the most important renewable resources for food, feed, and industrial raw material. It consists of four triploid cell types, i.e., aleurone, starchy endosperm, transfer cells, and cells of the embryo surrounding region. In maize, the aleurone layer is one cell layer thick and covers most of the perimeter of the endosperm. Specification of maize aleurone cell fate is proposed to occur through activation of the tumor necrosis factor receptor-like receptor kinase CRINKLY4. A second maize gene essential for aleurone cell development is defective kernel 1 (dek1). Here we show that DEK1 shares high homology with animal calpains. The predicted 2,159-aa DEK1 protein has 21 transmembrane regions, an extracellular loop, and a cysteine proteinase domain that shares high homology with domain II of m-calpain from animals. We propose that DEK1 functions to maintain and restrict the aleurone cell fate imposed by CR4 through activation of its cysteine proteinase by contact with the outer endosperm surface. DEK1 seems to be the only member of the calpain superfamily in plants, Arabidopsis DEK1 sharing 70% overall identity with maize DEK1. The expression of dek1 in most plant tissues in maize and Arabidopsis, as well as its presence in a variety of higher plants, including angiosperms and gymnosperms, suggests that DEK1 plays a conserved role in plant signal transduction.
Developmental Biology | 2011
Mark J. Dayel; Rosanna A. Alegado; Stephen R. Fairclough; Tera C. Levin; Scott A. Nichols; Kent L. McDonald; Nicole King
It has been posited that animal development evolved from pre-existing mechanisms for regulating cell differentiation in the single celled and colonial ancestors of animals. Although the progenitors of animals cannot be studied directly, insights into their cell biology may be gleaned from comparisons between animals and their closest living relatives, the choanoflagellates. We report here on the life history, cell differentiation and intercellular interactions in the colony-forming choanoflagellate Salpingoeca rosetta. In response to diverse environmental cues, S. rosetta differentiates into at least five distinct cell types, including three solitary cell types (slow swimmers, fast swimmers, and thecate cells) and two colonial forms (rosettes and chains). Electron microscopy reveals that cells within colonies are held together by a combination of fine intercellular bridges, a shared extracellular matrix, and filopodia. In addition, we have discovered that the carbohydrate-binding protein wheat germ agglutinin specifically stains colonies and the slow swimmers from which they form, showing that molecular differentiation precedes multicellular development. Together, these results help establish S. rosetta as a model system for studying simple multicellularity in choanoflagellates and provide an experimental framework for investigating the origin of animal multicellularity and development.
Proceedings of the National Academy of Sciences of the United States of America | 2012
Scott A. Nichols; Brock William Roberts; Daniel J. Richter; Stephen R. Fairclough; Nicole King
The evolution of cadherins, which are essential for metazoan multicellularity and restricted to metazoans and their closest relatives, has special relevance for understanding metazoan origins. To reconstruct the ancestry and evolution of cadherin gene families, we analyzed the genomes of the choanoflagellate Salpingoeca rosetta, the unicellular outgroup of choanoflagellates and metazoans Capsaspora owczarzaki, and a draft genome assembly from the homoscleromorph sponge Oscarella carmela. Our finding of a cadherin gene in C. owczarzaki reveals that cadherins predate the divergence of the C. owczarzaki, choanoflagellate, and metazoan lineages. Data from these analyses also suggest that the last common ancestor of metazoans and choanoflagellates contained representatives of at least three cadherin families, lefftyrin, coherin, and hedgling. Additionally, we find that an O. carmela classical cadherin has predicted structural features that, in bilaterian classical cadherins, facilitate binding to the cytoplasmic protein β-catenin and, thereby, promote cadherin-mediated cell adhesion. In contrast with premetazoan cadherin families (i.e., those conserved between choanoflagellates and metazoans), the later appearance of classical cadherins coincides with metazoan origins.
Integrative and Comparative Biology | 2009
Sally P. Leys; Scott A. Nichols; Emily D. M. Adams
An epithelium is important for integrity, homeostasis, communication and co-ordination, and its development must have been a fundamental step in the evolution of modern metazoan body plans. Sponges are metazoans that are often said to lack a true epithelium. We assess the properties of epithelia, and review the history of studies on sponge epithelia, focusing on their homology to bilaterian epithelia, their ultrastructure, and on their ability to seal. Electron micrographs show that adherens-type junctions are present in sponges but they can appear much slighter than equivalent junctions in other metazoans. Fine septae are seen in junctions of all sponge groups, but distinct septate junctions are only known from Calcarea. Similarly, all sponges can have collagenous sheets underlying their epithelia, but only homoscleromorphs are established to have a distinct basal lamina. The presence of most, but not all, gene families known to be involved in epithelial development and function also suggests that sponge epithelia function like, and are homologous to, bilaterian epithelia. However, physiological evidence that sponge epithelia regulate their internal environment is so far lacking. Given that up to six differentiated epithelia can be recognized in sponges, distinct physiological roles are expected. Recognition that sponges have epithelia challenges the perception that sponges are only loose associations of cells, and helps to relate the biology and physiology of the body plan of the adult sponge to the biology of other metazoans.
Microbial Ecology | 2009
Detmer Sipkema; Bradley M. Holmes; Scott A. Nichols; Harvey W. Blanch
We have characterised the northern Pacific undescribed sponge Haliclona (?gellius) sp. based on rDNA of the sponge and its associated microorganisms. The sponge is closely related to Amphimedon queenslandica from the Great Barrier Reef as the near-complete 18S rDNA sequences of both sponges were identical. The microbial fingerprint of three specimens harvested at different times and of a transplanted specimen was compared to identify stably associated microorganisms. Most bacterial phyla were detected in each sample, but only a few bacterial species were determined to be stably associated with the sponge. A sponge-specific β- and γ-Proteobacterium were abundant clones and both of them were present in three of the four specimens analysed. In addition, a Planctomycete and a Crenarchaea were detected in all sponge individuals. Both were closely related to operational taxonomic units that have been found in other sponges, but not exclusively in sponges. Interestingly, also a number of clones that are closely related to intracellular symbionts from insects and amoeba were detected.
Journal of Molecular Evolution | 2007
Dirk Erpenbeck; Scott A. Nichols; Oliver Voigt; Martin Dohrmann; Bernard M. Degnan; John N. A. Hooper; Gert Wörheide
Many rDNA molecular phylogenetic studies result in trees that are incongruent to either alternative gene tree reconstructions and/or morphological assumptions. One reason for this outcome might be the application of suboptimal phylogenetic substitution models. While the most commonly implemented models describe the evolution of independently evolving characters fairly well, they do not account for character dependencies such as rRNA strands that form a helix in the ribosome. Such nonindependent sites require the use of models that take into account the coevolution of the complete nucleotide pair (doublet). We analyzed 28S rDNA (LSU) demosponge phylogenies using a “doublet” model for pairing sites (rRNA-helices) and compared our findings with the results of “standard” approaches using Bayes factors. We demonstrate that paired and unpaired sites of the same gene result in different reconstructions and that usage of a doublet model leads to more reliable demosponge trees. We show the influence of more sophisticated models on phylogenetic reconstructions of early-branching metazoans and the phylogenetic relationships of demosponge orders.
Journal of the Marine Biological Association of the United Kingdom | 2007
Kord M. Kober; Scott A. Nichols
Recent phylogenetic analyses of demosponges have suggested that the order Poecilosclerida is monophyletic and nested within the paraphyletic ‘order’ Hadromerida. Until now, this result has rested upon very limited taxon sampling of SSU sequences and partial LSU sequences. We collected and analysed additional full-length SSU and LSU sequences to test the validity and position of the poecilosclerid/hadromerid clade within demosponges, and we sampled a short segment of the LSU from diverse hadromerids to explore the internal relationships of Hadromerida. Our data strongly support the existence of a hadromerid/poecilosclerid clade that is sister to a poorly characterized group of halichondrid and agelasid species (‘Clade C’). We find support for the monophyly of the hadromerid families Polymastiidae, Placospongiidae and Timeidae, and conditional support for the family Suberitidae. Furthermore, both LSU and SSU data support a clade that includes a mixture of species assigned to the families Tethyidae and Hemiasterellidae (TETH/HEM) and a mixed clade including members of the families Clionaidae and Spirastrellidae (CLIO/SPIR). The family Placospongiidae is reconstructed as sister to the clade CLIO/SPIR and the family Timeidae is supported as sister to the clade TETH/HEM. The order Poecilosclerida is most closely allied with the Placospongiidae/CLIO/SPIR clade.
Journal of Experimental Zoology | 2013
Jeffrey M. Robinson; Erik A. Sperling; Brith Bergum; Marcin Adamski; Scott A. Nichols; Maja Adamska; Kevin J. Peterson
We present the discovery of microRNAs (miRNAs) in the calcisponges Sycon and Leucosolenia (phylum Calcarea), and potential miRNAs in the homoscleromorph Oscarella carmela (Phylum Homoscleromorpha), expanding the complement of poriferan miRNAs previously known only from the siliceous sponges (demosponges and hexactinellids). Comparison of these miRNAs with those previously described from silicisponges and eumetazoans reveals that these newly described miRNAs are novel, with each metazoan lineage (Silicea, Calcarea, Homoscleromorpha, and Eumetazoa) characterized by a unique and non-overlapping repertoire of miRNAs (or potential miRNAs as in the case of the homoscleromorphs). Because each group is characterized by a unique repertoire of miRNAs, miRNAs cannot be used to help resolve the contentious issue of sponge mono- versus paraphyly. Further, because all sponges are characterized by a similar repertoire of tissue types and body plan organisation, we hypothesize that the lack of conserved miRNAs amongst the three primary sponge lineages is evidence that cellular differentiation and cell type specificity in sponges are not dependent upon conserved miRNAs, contrary to many known cases in eumetazoans. Finally, we suggest that miRNAs evolved multiple times independently not only among eukaryotes, but even within animals, independently evolved miRNAs representing molecular exaptations of RNAi machinery into pre-existing gene regulatory networks. The role(s) miRNAs play though in sponge biology and evolution remains an open question.