Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Scott B. Hansen is active.

Publication


Featured researches published by Scott B. Hansen.


The EMBO Journal | 2005

Structures of Aplysia Achbp Complexes with Nicotinic Agonists and Antagonists Reveal Distinctive Binding Interfaces and Conformations.

Scott B. Hansen; Gerlind Sulzenbacher; Tom Huxford; Pascale Marchot; Palmer Taylor; Yves Bourne

Upon ligand binding at the subunit interfaces, the extracellular domain of the nicotinic acetylcholine receptor undergoes conformational changes, and agonist binding allosterically triggers opening of the ion channel. The soluble acetylcholine‐binding protein (AChBP) from snail has been shown to be a structural and functional surrogate of the ligand‐binding domain (LBD) of the receptor. Yet, individual AChBP species display disparate affinities for nicotinic ligands. The crystal structure of AChBP from Aplysia californica in the apo form reveals a more open loop C and distinctive positions for other surface loops, compared with previous structures. Analysis of Aplysia AChBP complexes with nicotinic ligands shows that loop C, which does not significantly change conformation upon binding of the antagonist, methyllycaconitine, further opens to accommodate the peptidic antagonist, α‐conotoxin ImI, but wraps around the agonists lobeline and epibatidine. The structures also reveal extended and nonoverlapping interaction surfaces for the two antagonists, outside the binding loci for agonists. This comprehensive set of structures reflects a dynamic template for delineating further conformational changes of the LBD of the nicotinic receptor.


Nature | 2011

Structural basis of PIP2 activation of the classical inward rectifier K+ channel Kir2.2

Scott B. Hansen; Xiao Tao; Roderick MacKinnon

The regulation of ion channel activity by specific lipid molecules is widely recognized as an integral component of electrical signalling in cells. In particular, phosphatidylinositol 4,5-bisphosphate (PIP2), a minor yet dynamic phospholipid component of cell membranes, is known to regulate many different ion channels. PIP2 is the primary agonist for classical inward rectifier (Kir2) channels, through which this lipid can regulate a cell’s resting membrane potential. However, the molecular mechanism by which PIP2 exerts its action is unknown. Here we present the X-ray crystal structure of a Kir2.2 channel in complex with a short-chain (dioctanoyl) derivative of PIP2. We found that PIP2 binds at an interface between the transmembrane domain (TMD) and the cytoplasmic domain (CTD). The PIP2-binding site consists of a conserved non-specific phospholipid-binding region in the TMD and a specific phosphatidylinositol-binding region in the CTD. On PIP2 binding, a flexible expansion linker contracts to a compact helical structure, the CTD translates 6 Å and becomes tethered to the TMD and the inner helix gate begins to open. In contrast, the small anionic lipid dioctanoyl glycerol pyrophosphatidic acid (PPA) also binds to the non-specific TMD region, but not to the specific phosphatidylinositol region, and thus fails to engage the CTD or open the channel. Our results show how PIP2 can control the resting membrane potential through a specific ion-channel-receptor–ligand interaction that brings about a large conformational change, analogous to neurotransmitter activation of ion channels at synapses.


The EMBO Journal | 2005

Crystal structure of a Cbtx–AChBP complex reveals essential interactions between snake α-neurotoxins and nicotinic receptors

Yves Bourne; Todd T. Talley; Scott B. Hansen; Palmer Taylor; Pascale Marchot

The crystal structure of the snake long α‐neurotoxin, α‐cobratoxin, bound to the pentameric acetylcholine‐binding protein (AChBP) from Lymnaea stagnalis, was solved from good quality density maps despite a 4.2 Å overall resolution. The structure unambiguously reveals the positions and orientations of all five three‐fingered toxin molecules inserted at the AChBP subunit interfaces and the conformational changes associated with toxin binding. AChBP loops C and F that border the ligand‐binding pocket move markedly from their original positions to wrap around the tips of the toxin first and second fingers and part of its C‐terminus, while rearrangements also occur in the toxin fingers. At the interface of the complex, major interactions involve aromatic and aliphatic side chains within the AChBP binding pocket and, at the buried tip of the toxin second finger, conserved Phe and Arg residues that partially mimic a bound agonist molecule. Hence this structure, in revealing a distinctive and unpredicted conformation of the toxin‐bound AChBP molecule, provides a lead template resembling a resting state conformation of the nicotinic receptor and for understanding selectivity of curaremimetic α‐neurotoxins for the various receptor species.


Nature | 2004

Coupling of agonist binding to channel gating in an ACh-binding protein linked to an ion channel

Cecilia Bouzat; Fernanda Gumilar; Guillermo Spitzmaul; Hai Long Wang; Diego Rayes; Scott B. Hansen; Palmer Taylor; Steven M. Sine

Neurotransmitter receptors from the Cys-loop superfamily couple the binding of agonist to the opening of an intrinsic ion pore in the final step in rapid synaptic transmission. Although atomic resolution structural data have recently emerged for individual binding and pore domains, how they are linked into a functional unit remains unknown. Here we identify structural requirements for functionally coupling the two domains by combining acetylcholine (ACh)-binding protein, whose structure was determined at atomic resolution, with the pore domain from the serotonin type-3A (5-HT3A) receptor. Only when amino-acid sequences of three loops in ACh-binding protein are changed to their 5-HT3A counterparts does ACh bind with low affinity characteristic of activatable receptors, and trigger opening of the ion pore. Thus functional coupling requires structural compatibility at the interface of the binding and pore domains. Structural modelling reveals a network of interacting loops between binding and pore domains that mediates this allosteric coupling process.


Journal of Biological Chemistry | 2002

Tryptophan Fluorescence Reveals Conformational Changes in the Acetylcholine Binding Protein

Scott B. Hansen; Zoran Radić; Todd T. Talley; Brian E. Molles; Tom Deerinck; Igor Tsigelny; Palmer Taylor

The recent characterization of an acetylcholine binding protein (AChBP) from the fresh water snail, Lymnaea stagnalis, shows it to be a structural homolog of the extracellular domain of the nicotinic acetylcholine receptor (nAChR). To ascertain whether the AChBP exhibits the recognition properties and functional states of the nAChR, we have expressed the protein in milligram quantities from a synthetic cDNA transfected into human embryonic kidney (HEK) cells. The protein secreted into the medium shows a pentameric rosette structure with ligand stoichiometry approximating five sites per pentamer. Surprisingly, binding of acetylcholine, selective agonists, and antagonists ranging from small alkaloids to larger peptides results in substantial quenching of the intrinsic tryptophan fluorescence. Using stopped-flow techniques, we demonstrate rapid rates of association and dissociation of agonists and slow rates for the α-neurotoxins. Since agonist binding occurs in millisecond time frames, and the α-neurotoxins may induce a distinct conformational state for the AChBP-toxin complex, the snail protein shows many of the properties expected for receptor recognition of interacting ligands. Thus, the marked tryptophan quenching not only documents the importance of aromatic residues in ligand recognition, but establishes that the AChBP will be a useful functional as well as structural surrogate of the nicotinic receptor.


Journal of Biological Chemistry | 2008

An ion selectivity filter in the extracellular domain of Cys-loop receptors reveals determinants for ion conductance.

Scott B. Hansen; Hai Long Wang; Palmer Taylor; Steven M. Sine

Neurotransmitter binding to Cys-loop receptors promotes a prodigious transmembrane flux of several million ions/s, but to date, structural determinants of ion flux have been identified flanking the membrane-spanning region. Using x-ray crystallography, sequence analysis, and single-channel recording, we identified a novel determinant of ion conductance near the point of entry of permeant ions. Co-crystallization of acetylcholine-binding protein with sulfate anions revealed coordination of \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{SO}_{4}^{2-}\) \end{document} with a ring of lysines at a position equivalent to 24Å above the lipid membrane in homologous Cys-loop receptors. Analysis of multiple sequence alignments revealed that residues equivalent to the ring of lysines are negatively charged in cation-selective receptors but are positively charged in anion-selective receptors. Charge reversal of side chains at homologous positions in the nicotinic receptor from the motor end plate decreases unitary conductance up to 80%. Selectivity filters stemming from transmembrane α-helices have similar pore diameters and compositions of amino acids. These findings establish that when the channel opens under a physiological electrochemical gradient, permeant ions are initially stabilized within the extracellular vestibule of Cys-loop receptors, and this stabilization is a major determinant of ion conductance.


Molecular Pharmacology | 2006

Solution NMR of Acetylcholine Binding Protein Reveals Agonist-Mediated Conformational Change of the C-Loop

Fan Gao; Georges Mer; Marco Tonelli; Scott B. Hansen; Thomas P. Burghardt; Palmer Taylor; Steven M. Sine

Previous X-ray crystallography, molecular dynamics simulation, fluorescence spectroscopy, and deuterium-hydrogen exchange of acetylcholine binding protein (AChBP) suggest that after binding of the agonist, the C-loop at the periphery of the binding site draws inward to cap the site and envelop the agonist. In this study, we use high-resolution solution NMR to monitor changes in the chemical environment of the C-loop without and with acetylcholine (ACh) bound. Substitution of [15N]cysteine for the native cysteines 123, 136, 187, and 188 provided intrinsic monitors of the chemical environments of the Cys- and C-loops, respectively. Two-dimensional transverse relaxation-optimized spectroscopy 15N-1H HSQC spectroscopy of apo-AChBP revealed seven well resolved cross-peaks for the group of cysteines. The spectrum of AChBP with Ser substituted for Cys 187 and 188 shows only two main cross-peaks, corresponding to Cys 123 and 136 from the Cys-loop, enabling resonance assignments. After binding of ACh, the five cross-peaks associated with cysteines from the C-loop condense into two predominant cross-peaks not observed in the spectrum from the apo protein, indicating a restricted range of conformations and change in chemical environment of the C-loop. The results show that isotopic cysteine can be incorporated into specified positions of AChBP expressed from a eukaryotic source, that the C-loop assumes multiple conformations without ACh, but that its conformation becomes restricted with ACh bound. The collective findings suggest a structural mechanism for agonist recognition in AChBP and related Cys-loop receptors.


Biochimica et Biophysica Acta | 2015

Lipid agonism: The PIP2 paradigm of ligand-gated ion channels.

Scott B. Hansen

The past decade, membrane signaling lipids emerged as major regulators of ion channel function. However, the molecular nature of lipid binding to ion channels remained poorly described due to a lack of structural information and assays to quantify and measure lipid binding in a membrane. How does a lipid-ligand bind to a membrane protein in the plasma membrane, and what does it mean for a lipid to activate or regulate an ion channel? How does lipid binding compare to activation by soluble neurotransmitter? And how does the cell control lipid agonism? This review focuses on lipids and their interactions with membrane proteins, in particular, ion channels. I discuss the intersection of membrane lipid biology and ion channel biophysics. A picture emerges of membrane lipids as bona fide agonists of ligand-gated ion channels. These freely diffusing signals reside in the plasma membrane, bind to the transmembrane domain of protein, and cause a conformational change that allosterically gates an ion channel. The system employs a catalog of diverse signaling lipids ultimately controlled by lipid enzymes and raft localization. I draw upon pharmacology, recent protein structure, and electrophysiological data to understand lipid regulation and define inward rectifying potassium channels (Kir) as a new class of PIP2 lipid-gated ion channels.


Journal of Molecular Neuroscience | 2006

Structural characterization of agonist and antagonist-bound acetylcholine-binding protein from Aplysia californica.

Scott B. Hansen; Gerlind Sulzenbacher; Tom Huxford; Pascale Marchot; Yves Bourne; Palmer Taylor

Nicotinic acetylcholine receptors (nAChRs) are well-characterized allosteric transmembrane proteins involved in the rapid gating of ions elicited by ACh. These receptors belong to the Cys-loop superfamily of ligand-gated ion channels, which also includes GABAA and GABAC, 5-HT3, and glycine receptors. The nAChRs are homo- or heteromeric pentamers of structurally related subunits that encompass an extracellular N-terminal ligand-binding domain, four transmembrane-spanning regions that form the ion channel, and an extended intracellular region between spans 3 and 4. Ligand binding triggers conformational changes that are transmitted to the transmembrane-spanning region, leading to gating and changes in membrane potential. The four transmembrane spans on each of the five subunits create a substantial region of hydrophobicity that precludes facile crystallization of this protein. However the freshwater snail, Lymnaea stagnalis, produces a soluble homopentameric protein, termed the ACh-binding protein (AChBP), which binds ACh (Smit et al., 2001). Its structure was determined recently (Brejc et al., 2001) at high resolution, revealing the structural scaffold for nAChR, and has become a functional and structural surrogate of the nAChR ligand-binding domain. We have characterized an AChBP from Aplysia californica and determined distinct ligand-binding properties when compared to those of L. stagnalis, including ligand specificity for the nAChR alpha7 subtype-specific alpha-conotoxin ImI (Hansen et al., 2004).


Journal of Molecular Neuroscience | 2010

On the origin of ion selectivity in the Cys-loop receptor family.

Steven M. Sine; Hai Long Wang; Scott B. Hansen; Palmer Taylor

Agonist binding to Cys-loop receptors promotes a large transmembrane ion flux of several million cations or anions per second. To investigate structural bases for the rapid and charge-selective flux, we used all atom molecular dynamics (MD) simulations, X-ray crystallography, and single channel recording. MD simulations of the muscle nicotinic receptor, imbedded in a lipid bilayer with an applied transmembrane potential, reveal single cation translocation events during transient periods of channel hydration. During the simulation trajectory, cations paused for prolonged periods near several rings of anionic residues projecting from the lumen of the extracellular domain of the receptor, but subsequently the cation moved rapidly through the hydrophobic transmembrane region as the constituent alpha-helices exhibited back and forth rocking motions. Cocrystallization of acetylcholine binding protein with sulfate ions revealed coordination of five sulfates with residues from one of these charged rings; in cation-selective Cys-loop receptors this ring contains negatively charged residues, whereas in anion-selective receptors it contains positively charged residues. In the muscle nicotinic receptor, charge reversal of residues of this ring decreases unitary conductance by up to 80%. Thus in Cys-loop receptors, a series of charged rings along the ion translocation pathway concentrates hydrated ions relative to bulk solution, giving rise to charge selectivity, and then subtle motions of the hydrophobic transmembrane, coupled with transient periods of water filling, enable rapid ion flux.

Collaboration


Dive into the Scott B. Hansen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hai Long Wang

East Tennessee State University

View shared research outputs
Top Co-Authors

Avatar

Pascale Marchot

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Yves Bourne

Aix-Marseille University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ryan E. Hibbs

University of California

View shared research outputs
Top Co-Authors

Avatar

Tom Huxford

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge