Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Scott C. Collingwood is active.

Publication


Featured researches published by Scott C. Collingwood.


Journal of Occupational and Environmental Hygiene | 2007

Field evaluation of an engineering control for respirable crystalline silica exposures during mortar removal.

Scott C. Collingwood; William A. Heitbrink

During mortar removal with a right angle grinder, a building renovation process known as “tuck pointing,” worker exposures to respirable crystalline silica can be as high as 5 mg/m3, 100 times the recommended exposure limit developed by the National Institute for Occupational Safety and Health. To reduce the risk of silicosis among these workers, a vacuum cleaner can be used to exhaust 80 ft3/min (2.26 m3/min) from a hood mounted on the grinder. Field trials examined the ability of vacuum cleaners to maintain adequate exhaust ventilation rates and measure exposure outcomes when using this engineering control. These field trials involved task-based exposure measurement of respirable dust and crystalline silica exposures during mortar removal. These measurements were compared with published exposure data. Vacuum cleaner airflows were obtained by measuring and digitally logging vacuum cleaner static pressure at the inlet to the vacuum cleaner motor. Static pressures were converted to airflows based on experimentally determined fan curves. In two cases, video exposure monitoring was conducted to study the relationship between worker activities and dust exposure. Worker activities were video taped concurrent with aerosol photometer measurement of dust exposure and vacuum cleaner static pressure as a measure of airflow. During these field trials, respirable crystalline silica exposures for 22 samples had a geometric mean of 0.06 mg/m3 and a range of less than 0.01 to 0.86 mg/m3. For three other studies, respirable crystalline silica exposures during mortar removal have a geometric means of 1.1 to 0.35. Although this field study documented noticeably less exposure to crystalline silica, video exposure monitoring found that the local exhaust ventilation provided incomplete dust control due to low exhaust flow rates, certain work practices, and missing mortar. Vacuum cleaner airflow decrease had a range of 3 to 0.4 ft3/min (0.08 to 0.01 m3/sec2) over a range of vacuum cleaners, hose diameters, and hose lengths. To control worker exposure to respirable crystalline silica, local exhaust ventilation needs to be incorporated into a comprehensive silica control program that includes respiratory protection, worker training, and local exhaust ventilation.


Journal of Occupational and Environmental Hygiene | 2015

Comparison of Single-Point and Continuous Sampling Methods for Estimating Residential Indoor Temperature and Humidity

James D. Johnston; Brianna M. Magnusson; Dennis L. Eggett; Scott C. Collingwood; Scott A. Bernhardt

Residential temperature and humidity are associated with multiple health effects. Studies commonly use single-point measures to estimate indoor temperature and humidity exposures, but there is little evidence to support this sampling strategy. This study evaluated the relationship between single-point and continuous monitoring of air temperature, apparent temperature, relative humidity, and absolute humidity over four exposure intervals (5-min, 30-min, 24-hr, and 12-days) in 9 northern Utah homes, from March-June 2012. Three homes were sampled twice, for a total of 12 observation periods. Continuous data-logged sampling was conducted in homes for 2–3 wks, and simultaneous single-point measures (n = 114) were collected using handheld thermo-hygrometers. Time-centered single-point measures were moderately correlated with short-term (30-min) data logger mean air temperature (r = 0.76, β = 0.74), apparent temperature (r = 0.79, β = 0.79), relative humidity (r = 0.70, β = 0.63), and absolute humidity (r = 0.80, β = 0.80). Data logger 12-day means were also moderately correlated with single-point air temperature (r = 0.64, β = 0.43) and apparent temperature (r = 0.64, β = 0.44), but were weakly correlated with single-point relative humidity (r = 0.53, β = 0.35) and absolute humidity (r = 0.52, β = 0.39). Of the single-point RH measures, 59 (51.8%) deviated more than ±5%, 21 (18.4%) deviated more than ±10%, and 6 (5.3%) deviated more than ±15% from data logger 12-day means. Where continuous indoor monitoring is not feasible, single-point sampling strategies should include multiple measures collected at prescribed time points based on local conditions.


Environmental Research | 2015

Feasibility and informative value of environmental sample collection in the National Children's Vanguard Study.

Elizabeth B. Boyle; Nicole C. Deziel; Bonny Specker; Scott C. Collingwood; Clifford P. Weisel; David J. Wright; Michael Dellarco

BACKGROUND Birth cohort studies provide the opportunity to advance understanding of the impact of environmental factors on childhood health and development through prospective collection of environmental samples. METHODS We evaluated the feasibility and informative value of the environmental sample collection methodology in the initial pilot phase of the National Childrens Study, a planned U.S. environmental birth cohort study. Environmental samples were collected from January 2009-September 2010 at up to three home visits: pre-pregnancy (n=306), pregnancy (n=807), and 6-months postnatal (n=117). Collections included air for particulate matter ≤2.5 µm (PM2.5), nitrogen dioxide, ozone, volatile organic compounds (VOCs), and carbonyls; vacuum dust for allergens/endotoxin; water for VOCs, trihalomethanes (THMs), and haloacetic acids (HAAs); and wipe samples for pesticides, semi-volatile organics, and metals. We characterized feasibility using sample collection rates and times and informative value using analyte detection frequencies (DF). RESULTS Among the 1230 home visits, environmental sample collection rates were high across all sample types (mean=89%); all samples except the air PM2.5 samples had collection times <30 min. Informative value was low for water VOCs (median DF=0%) and pesticide floor wipes (median DF=5%). Informative value was moderate for air samples (median DF=35%) and high for water THMs and HAAs (median DF=91% and 75%, respectively). CONCLUSIONS Though collection of environmental samples was feasible, some samples (e.g., wipe pesticides and water VOCs) yielded limited information. These results can be used in conjunction with other study design considerations, such as target population size and hypotheses of interest, to inform the method selection of future environmental health birth cohort studies.


Journal of Occupational and Environmental Hygiene | 2018

Laboratory evaluation of a low-cost, real-time, aerosol multi-sensor

Robert J. Vercellino; Darrah K. Sleeth; Rodney G. Handy; Kyeong T. Min; Scott C. Collingwood

ABSTRACT Exposure to occupational aerosols are a known hazard in many industry sectors and can be a risk factor for several respiratory diseases. In this study, a laboratory evaluation of low-cost aerosol sensors, the Dylos DC1700 and a modified Dylos known as the Utah Modified Dylos Sensor (UMDS), was performed to assess the sensors’ efficiency in sampling respirable and inhalable dust at high concentrations, which are most common in occupational settings. Dust concentrations were measured in a low-speed wind tunnel with 3 UMDSs, collocated with an aerosol spectrometer (Grimm 1.109) and gravimetric respirable and inhalable samplers. A total of 10 tests consisting of 5 different concentrations and 2 test aerosols, Arizona road dust and aluminum oxide, were conducted. For the Arizona road dust, total particle count was strongly related between the spectrometer and the UMDS with a coefficient of determination (R2) between 0.86–0.92. Particle count concentrations measured with the UMDS were converted to mass and also were related with gravimetrically collected inhalable and respirable dust. The UMDS small bin (i.e., all particles) compared to the inhalable sampler yielded an R2 of 0.86–0.92, and the large bin subtracted from the small bin (i.e., only the smallest particles) compared to the respirable sampler yielded an R2 of 0.93–0.997. Tests with the aluminum oxide demonstrated a substantially lower relationship across all comparisons. Furthermore, assessment of intra-instrument variability was consistent for all instruments, but inter-instrument variability indicated that each instrument requires its own calibration equation to yield accurate exposure estimates. Overall, it appears that the UMDS can be used as a low-cost tool to estimate respirable and inhalable concentrations found in many workplaces. Future studies will focus on deployment of a UMDS network in an occupational setting.


Expert Opinion on Drug Metabolism & Toxicology | 2017

Riding (High) into the danger zone: a review of potential differences in chemical exposures in fighter pilots resulting from high altitude and G-forces

Matthew W. Linakis; Kathleen M. Job; Xiaoxi Liu; Scott C. Collingwood; Heather A. Pangburn; Darrin K. Ott; Catherine M. T. Sherwin

ABSTRACT Introduction: When in flight, pilots of high performance aircraft experience conditions unique to their profession. Training flights, performed as often as several times a week, can expose these pilots to altitudes in excess of 15 km (~50,000 ft, with a cabin pressurized to an altitude of ~20,000 ft), and the maneuvers performed in flight can exacerbate the G-forces felt by the pilot. While the pilots specifically train to withstand these extreme conditions, the physiologic stress could very likely lead to differences in the disposition of chemicals in the body, and consequently, dangerously high exposures. Unfortunately, very little is known about how the conditions experienced by fighter pilots affects chemical disposition. Areas covered: The purpose of this review is to present information about the effects of high altitude, G-forces, and other conditions experienced by fighter pilots on chemical disposition. Using this information, the expected changes in chemical exposure will be discussed, using isopropyl alcohol as an example. Expert opinion: There is a severe lack of information concerning the effects of the fighter pilot environment on the pharmacokinetics and pharmacodynamics of chemicals. Given the possibility of exposure prior to or during flight, it is important that these potential effects be investigated further.


International Journal of Environmental Research and Public Health | 2016

Estimation of the Human Extrathoracic Deposition Fraction of Inhaled Particles Using a Polyurethane Foam Collection Substrate in an IOM Sampler

Darrah K. Sleeth; Susan A. Balthaser; Scott C. Collingwood; Rodney R. Larson

Extrathoracic deposition of inhaled particles (i.e., in the head and throat) is an important exposure route for many hazardous materials. Current best practices for exposure assessment of aerosols in the workplace involve particle size selective sampling methods based on particle penetration into the human respiratory tract (i.e., inhalable or respirable sampling). However, the International Organization for Standardization (ISO) has recently adopted particle deposition sampling conventions (ISO 13138), including conventions for extrathoracic (ET) deposition into the anterior nasal passage (ET1) and the posterior nasal and oral passages (ET2). For this study, polyurethane foam was used as a collection substrate inside an inhalable aerosol sampler to provide an estimate of extrathoracic particle deposition. Aerosols of fused aluminum oxide (five sizes, 4.9 µm–44.3 µm) were used as a test dust in a low speed (0.2 m/s) wind tunnel. Samplers were placed on a rotating mannequin inside the wind tunnel to simulate orientation-averaged personal sampling. Collection efficiency data for the foam insert matched well to the extrathoracic deposition convention for the particle sizes tested. The concept of using a foam insert to match a particle deposition sampling convention was explored in this study and shows promise for future use as a sampling device.


Journal of Occupational and Environmental Hygiene | 2016

Factors associated with biosafety level-2 research workers' laboratory exit handwashing behaviors and glove removal compliance

James D. Johnston; Ray M. Merrill; Grant C. Zimmerman; Scott C. Collingwood; James C. Reading


Journal of Environmental Health | 2014

Sensor drift and predicted calibration intervals of handheld temperature and relative humidity meters under residential field-use conditions.

Scott A. Bernhardt; Scott C. Collingwood; Kyle Mumford; Dennis L. Eggett; Brianna M. Magnusson; James D. Johnston


Smart Health | 2018

Smart home air filtering system: A randomized controlled trial for performance evaluation

Kyeong T. Min; Philip Lundrigan; Katherine A. Sward; Scott C. Collingwood; Neal Patwari


Archive | 2017

EpiFi: An In-Home Sensor Network Architecture for Epidemiological Studies.

Philip Lundrigan; Kyeong T. Min; Neal Patwari; Sneha Kumar Kasera; Kerry Kelly; Jimmy Moore; Miriah D. Meyer; Scott C. Collingwood; Flory L. Nkoy; Bryan L. Stone; Katherine A. Sward

Collaboration


Dive into the Scott C. Collingwood's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bonny Specker

South Dakota State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge