Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where James D. Johnston is active.

Publication


Featured researches published by James D. Johnston.


Journal of The Air & Waste Management Association | 2016

Applications of GPS-tracked personal and fixed-location PM2.5 continuous exposure monitoring

Chantel Sloan; Tyler J. Philipp; Rebecca K. Bradshaw; Sara Chronister; W. Bradford Barber; James D. Johnston

ABSTRACT Continued development of personal air pollution monitors is rapidly improving government and research capabilities for data collection. In this study, we tested the feasibility of using GPS-enabled personal exposure monitors to collect personal exposure readings and short-term daily PM2.5 measures at 15 fixed locations throughout a community. The goals were to determine the accuracy of fixed-location monitoring for approximating individual exposures compared to a centralized outdoor air pollution monitor, and to test the utility of two different personal monitors, the RTI MicroPEM V3.2 and TSI SidePak AM510. For personal samples, 24-hr mean PM2.5 concentrations were 6.93 μg/m3 (stderr = 0.15) and 8.47 μg/m3 (stderr = 0.10) for the MicroPEM and SidePak, respectively. Based on time–activity patterns from participant journals, exposures were highest while participants were outdoors (MicroPEM = 7.61 µg/m3, stderr = 1.08, SidePak = 11.85 µg/m3, stderr = 0.83) or in restaurants (MicroPEM = 7.48 µg/m3, stderr = 0.39, SidePak = 24.93 µg/m3, stderr = 0.82), and lowest when participants were exercising indoors (MicroPEM = 4.78 µg/m3, stderr = 0.23, SidePak = 5.63 µg/m3, stderr = 0.08). Mean PM2.5 at the 15 fixed locations, as measured by the SidePak, ranged from 4.71 µg/m3 (stderr = 0.23) to 12.38 µg/m3 (stderr = 0.45). By comparison, mean 24-h PM2.5 measured at the centralized outdoor monitor ranged from 2.7 to 6.7 µg/m3 during the study period. The range of average PM2.5 exposure levels estimated for each participant using the interpolated fixed-location data was 2.83 to 19.26 µg/m3 (mean = 8.3, stderr = 1.4). These estimated levels were compared with average exposure from personal samples. The fixed-location monitoring strategy was useful in identifying high air pollution microclimates throughout the county. For 7 of 10 subjects, the fixed-location monitoring strategy more closely approximated individuals’ 24-hr breathing zone exposures than did the centralized outdoor monitor. Highlights are: Individual PM2.5 exposure levels vary extensively by activity, location and time of day; fixed-location sampling more closely approximated individual exposures than a centralized outdoor monitor; and small, personal exposure monitors provide added utility for individuals, researchers, and public health professionals seeking to more accurately identify air pollution microclimates. Implications: Personal air pollution monitoring technology is advancing rapidly. Currently, personal monitors are primarily used in research settings, but could they also support government networks of centralized outdoor monitors? In this study, we found differences in performance and practicality for two personal monitors in different monitoring scenarios. We also found that personal monitors used to collect outdoor area samples were effective at finding pollution microclimates, and more closely approximated actual individual exposure than a central monitor. Though more research is needed, there is strong potential that personal exposure monitors can improve existing monitoring networks.


Archives of Environmental & Occupational Health | 2018

Prevalence of house dust mite allergens in low-income homes with evaporative coolers in a semiarid climate.

James D. Johnston; Taylor P. Barney; Justin Heath Crandall; Marinn A. Brown; Tarah R. Westover; Sterling M. Paulson; Madeleine S. Smith; K. Scott Weber

ABSTRACT House dust mites are typically absent in homes in arid and semiarid climates due to low humidity. Evaporative “swamp” cooling significantly increases indoor humidity in dry climates and is suspected of promoting dust mite survival in these regions. We investigated the prevalence and concentration of mite allergens in dust from low-income homes (N = 22) with evaporative coolers in Utah County, Utah. Overall, 15 homes (68.2%) were positive for either Der p 1 or Der f 1 in at least 1 location. Geometric mean allergen levels in mattresses were 0.107 and 0.087 ug/g dust for Der p 1 and Der f 1, respectively. In furniture, levels were 0.143 and 0.165 ug/g dust for Der p1 and Der f 1, respectively. The percentage of positive homes in this study was much higher than previously reported in larger homes with swamp coolers in the same community. These results suggest socioeconomic factors may play a role in dust mite allergen prevalence in homes with evaporative coolers in dry climates.


PLOS ONE | 2016

Evaporative Cooler Use Influences Temporal Indoor Relative Humidity but Not Dust Mite Allergen Levels in Homes in a Semi-Arid Climate

James D. Johnston; Steven C. Tuttle; Morgan C. Nelson; Rebecca K. Bradshaw; Taylor G. Hoybjerg; Julene B. Johnson; Bryce A. Kruman; Taylor S. Orton; Ryan B. Cook; Dennis L. Eggett; K. Scott Weber

Concerns about energy consumption and climate change make residential evaporative coolers a popular alternative to central air conditioning in arid and semi-arid climates. However, evaporative coolers have been shown to significantly increase indoor relative humidity and dust mite allergen levels in some studies, while showing no association in other studies. Improved measurement of temporal fluctuations in indoor relative humidity may help identify factors that promote mite growth in homes in dry climates. Dust samples and continuous indoor relative humidity measurements were collected from homes with central air conditioning and homes with evaporative coolers in Utah. Samples were collected over two seasons, winter/spring (Jan–Apr) and summer (July–Sept), 2014. Dust samples were analyzed for Der p 1 and Der f 1 using a two-site monoclonal antibody-based enzyme-linked immunosorbent assay (ELISA) analysis. Housing characteristics including age of home, occupant density, and age of mattresses, furniture, and carpeting were also measured. Positive Der p 1 or Der f 1 samples were found in 25.0% of the homes and there was no difference in mean allergen levels by type of air conditioning. Indoor relative humidity was significantly higher in homes with evaporative coolers compared to those with central air conditioning during the summer. Homes with evaporative coolers also spent significantly more time during summer above 55.0% and 65.0% relative humidity compared to central air homes, but not above 75.0%. Findings from this study suggest that increased humidity from evaporative coolers may not be sufficient to exceed the critical equilibrium humidity or maintain humidity excursions for sufficient duration in relatively larger single-family homes in semi-arid climates to support mite growth and reproduction.


Journal of Occupational and Environmental Hygiene | 2014

The Influence of Risk Perception on Biosafety Level-2 Laboratory Workers’ Hand-To-Face Contact Behaviors

James D. Johnston; Dennis L. Eggett; Michele J. Johnson; James C. Reading

Pathogen transmission in the laboratory is thought to occur primarily through inhalation of infectious aerosols or by direct contact with mucous membranes on the face. While significant research has focused on controlling inhalation exposures, little has been written about hand contamination and subsequent hand-to-face contact (HFC) transmission. HFC may present a significant risk to workers in biosafety level-2 (BSL-2) laboratories where there is typically no barrier between the workers’ hands and face. The purpose of this study was to measure the frequency and location of HFC among BSL-2 workers, and to identify psychosocial factors that influence the behavior. Research workers (N = 93) from 21 BSL-2 laboratories consented to participate in the study. Two study personnel measured workers’ HFC behaviors by direct observation during activities related to cell culture maintenance, cell infection, virus harvesting, reagent and media preparation, and tissue processing. Following observations, a survey measuring 11 psychosocial predictors of HFC was administered to participants. Study personnel recorded 396 touches to the face over the course of the study (mean = 2.6 HFCs/hr). Of the 93 subjects, 67 (72%) touched their face at least once, ranging from 0.2–16.0 HFCs/hr. Among those who touched their face, contact with the nose was most common (44.9%), followed by contact with the forehead (36.9%), cheek/chin (12.5%), mouth (4.0%), and eye (1.7%). HFC rates were significantly different across laboratories F(20, 72) = 1.85, p = 0.03. Perceived severity of infection predicted lower rates of HFC (p = 0.03). For every one-point increase in the severity scale, workers had 0.41 fewer HFCs/hr (r = −.27, P < 0.05). This study suggests HFC is common among BSL-2 laboratory workers, but largely overlooked as a major route of exposure. Workers’ risk perceptions had a modest impact on their HFC behaviors, but other factors not considered in this study, including social modeling and work intensity, may play a stronger role in predicting the behavior. Mucous membrane protection should be considered as part of the BSL-2 PPE ensemble to prevent HFC.


Applied Occupational and Environmental Hygiene | 2000

The Effect of Thermal Loading on Laboratory Fume Hood Performance

James D. Johnston; Saul Jonathan Chessin; Brian W. Chesnovar; Dean R. Lillquist

A modified version of the ANSI/ASHRAE 110-1995 Method of Testing Performance of Laboratory Fume Hoods was used to evaluate the relationship between thermal loading in a laboratory fume hood and subsequent tracer gas leakage. Three types of laboratory burners were used, alone and in combination, to thermally challenge the hood. Heat output from burners was measured in BTU/hr, which was based on the fuel heat capacity and flow rate. Hood leakage was measured between 2824 and 69,342 BTU/hr. Sulfur hexafluoride (SF6) was released at 23.5 LPM for each level of thermal loading. Duct temperature was also measured during the heating process. Results indicate a linear relationship for both BTU/hr vs. hood leakage and duct temperature vs. hood leakage. Under these test conditions, each increase of 10,000 BTU/hr resulted in an additional 4 ppm SF6 in the manikins breathing zone (r2 = 0.68). An additional 3.1 ppm SF6 was measured for every 25 degrees F increase in duct temperature (r2 = 0.60). Both BTU/hr and duct temperature models showed p < 0.001. For these tests, BTU/hr was a better predictor of hood leakage than duct temperature. The results of this study indicate that heat output may compromise fume hood performance. This finding is consistent with those of previous studies.


Journal of Occupational and Environmental Hygiene | 2015

Comparison of Single-Point and Continuous Sampling Methods for Estimating Residential Indoor Temperature and Humidity

James D. Johnston; Brianna M. Magnusson; Dennis L. Eggett; Scott C. Collingwood; Scott A. Bernhardt

Residential temperature and humidity are associated with multiple health effects. Studies commonly use single-point measures to estimate indoor temperature and humidity exposures, but there is little evidence to support this sampling strategy. This study evaluated the relationship between single-point and continuous monitoring of air temperature, apparent temperature, relative humidity, and absolute humidity over four exposure intervals (5-min, 30-min, 24-hr, and 12-days) in 9 northern Utah homes, from March-June 2012. Three homes were sampled twice, for a total of 12 observation periods. Continuous data-logged sampling was conducted in homes for 2–3 wks, and simultaneous single-point measures (n = 114) were collected using handheld thermo-hygrometers. Time-centered single-point measures were moderately correlated with short-term (30-min) data logger mean air temperature (r = 0.76, β = 0.74), apparent temperature (r = 0.79, β = 0.79), relative humidity (r = 0.70, β = 0.63), and absolute humidity (r = 0.80, β = 0.80). Data logger 12-day means were also moderately correlated with single-point air temperature (r = 0.64, β = 0.43) and apparent temperature (r = 0.64, β = 0.44), but were weakly correlated with single-point relative humidity (r = 0.53, β = 0.35) and absolute humidity (r = 0.52, β = 0.39). Of the single-point RH measures, 59 (51.8%) deviated more than ±5%, 21 (18.4%) deviated more than ±10%, and 6 (5.3%) deviated more than ±15% from data logger 12-day means. Where continuous indoor monitoring is not feasible, single-point sampling strategies should include multiple measures collected at prescribed time points based on local conditions.


The Open Aids Journal | 2012

Comparison of HIV/AIDS Rates Between U.S.-Born Blacks and African-Born Blacks in Utah, 2000-2009

Crystal Ashton; Scott A. Bernhardt; Mike Lowe; Matthew Mietchen; James D. Johnston

The Utah Department of Health currently groups African-born blacks with U.S.-born blacks when reporting HIV/AIDS surveillance data. Studies suggest that categorizing HIV/AIDS cases in this manner may mask important epidemiological trends, and the distinct differences between these two populations warrant disaggregating data prior to reporting. The purpose of this study was to characterize the HIV/AIDS positive populations in U.S. and African-born blacks in Utah and evaluate the need for disaggregating the two groups. A total of 1,111 cases were identified through the statewide electronic HIV/AIDS Reporting System from 2000 - 2009. Data were analyzed for prevalence of HIV diagnosis for African-born blacks, U.S.-born blacks, and U.S.-born whites. Secondary analysis included HIV diagnosis by age, sex, African region of nativity, transmission risk factors, and differences in late diagnosis of HIV infection. U.S.-born whites accounted for 914 (82.3%) cases, and had the lowest annual prevalence (4/100,000). Conversely, African-born and U.S.- born blacks had the highest prevalence, 162/100,000 and 24/100,000 respectively. African-born blacks made up 0.25% of the total population, but accounted for 7.9% of all HIV/AIDS cases. African-born black males were more likely to report “no reported risk” for HIV transmission than U.S.-born black males. Of African-born blacks, 55.7% reported East-African nativity. These results demonstrate the importance of stratifying the black/African American racial category by African-born and U.S.-born blacks when collecting and reporting HIV/AIDS state surveillance data even in a low-incidence state,which will better inform prevention and linkage-to-care efforts in Utah.


Applied Occupational and Environmental Hygiene | 2002

Thermal Loading as a Causal Factor in Exceeding the 0.1 PPM Laboratory Fume Hood Control Level

Saul Jonathan Chessin; James D. Johnston

Tracer gas testing per ANSI/ASHRAE 110-1995 Method of Testing Performance of Laboratory Fume Hoods was used to investigate the role of thermal loading in exceeding laboratory fume hood control levels. Three types of typical laboratory burners (blast, Meeker, and economy) were used to provide a thermal challenge. Heat outputs of between 0 and 61,610 Btu/hr were based on fuel heat capacity (for liquid propane gas) and fuel gas flow rates. Breathing zone concentrations were measured with a MIRAN 1B2 infrared gas analyzer. Also, for each test, the difference between the room and duct temperatures (delta temperature) was measured. Results indicated a linear relationship between heat loads and tracer gas breathing zone concentrations for both Btu/hr and delta temperature. Control levels of 0.1 ppm were exceeded at less than 12,000 Btu/hr. Also, control levels were exceeded at a lower heat load when the tracer gas generation rate was increased. These results indicate that thermal loads in laboratory fume hoods increase the risk of exceeding laboratory fume hood control levels. Some compensatory measures relative to hood configuration and flow rates are recommended for laboratory operations involving heat sources.


PLOS ONE | 2017

Personal exposure to fine particulate air pollution while commuting: An examination of six transport modes on an urban arterial roadway

Robert A. Chaney; Chantel Sloan; Victoria C. Cooper; Daniel R. Robinson; Nathan R. Hendrickson; Tyler A. McCord; James D. Johnston

Traffic-related air pollution in urban areas contributes significantly to commuters’ daily PM2.5 exposures, but varies widely depending on mode of commuting. To date, studies show conflicting results for PM2.5 exposures based on mode of commuting, and few studies compare multiple modes of transportation simultaneously along a common route, making inter-modal comparisons difficult. In this study, we examined breathing zone PM2.5 exposures for six different modes of commuting (bicycle, walking, driving with windows open and closed, bus, and light-rail train) simultaneously on a single 2.7 km (1.68 mile) arterial urban route in Salt Lake City, Utah (USA) during peak “rush hour” times. Using previously published minute ventilation rates, we estimated the inhaled dose and exposure rate for each mode of commuting. Mean PM2.5 concentrations ranged from 5.20 μg/m3 for driving with windows closed to 15.21 μg/m3 for driving with windows open. The estimated inhaled doses over the 2.7 km route were 6.83 μg for walking, 2.78 μg for cycling, 1.28 μg for light-rail train, 1.24 μg for driving with windows open, 1.23 μg for bus, and 0.32 μg for driving with windows closed. Similarly, the exposure rates were highest for cycling (18.0 μg/hr) and walking (16.8 μg/hr), and lowest for driving with windows closed (3.7 μg/hr). Our findings support previous studies showing that active commuters receive a greater PM2.5 dose and have higher rates of exposure than commuters using automobiles or public transportation. Our findings also support previous studies showing that driving with windows closed is protective against traffic-related PM2.5 exposure.


Journal of Exposure Science and Environmental Epidemiology | 2017

Elemental analysis of infant airborne particulate exposures

Chantel Sloan; Frank X Weber; Rebecca K. Bradshaw; Tyler J. Philipp; W. Bradford Barber; Vanessa L Palmer; Robert J Graul; Steven C. Tuttle; Ryan T Chartier; James D. Johnston

Air pollution is hypothesized to have negative impacts on infant pulmonary health because of infants’ increased rates of respiration and ongoing lung development. The severity and type of impact may differ depending on elemental concentrations. We conducted a study of 21 infants <6 months old whose parents carried a small personal particulate monitoring device (RTI MicroPEM) and GPS unit with the infant for 7 days in January and February 2015. The study area was Utah County, UT, USA. Real-time particulate exposure levels, as well as optical density and elemental analysis of the particulate matter (PM), were compared with levels from an outdoor stationary monitor. Infants spent an average of 87.4% of their time indoors. PM levels varied widely by infant and time of day (average=19.07 μg/m3, range=0.63–170.25 μg/m3). Infant particulate exposures were not well approximated by the outdoor monitor. Infants had lower exposures to Sb, Mn, Pb, W and Fe than the outdoor monitor and higher exposures to Cd, Ni and Na. Differences were most pronounced for Na. Brown carbon was only detected by personal monitors and not by the outdoor monitor. Further research is needed to understand the potential implications of indoor elemental exposures on early respiratory development.

Collaboration


Dive into the James D. Johnston's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chantel Sloan

Brigham Young University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge