Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Scott C. Farrow is active.

Publication


Featured researches published by Scott C. Farrow.


Plant Molecular Biology | 2012

Integration of deep transcript and targeted metabolite profiles for eight cultivars of opium poppy

Isabel Desgagné-Penix; Scott C. Farrow; Dustin Cram; Jacek Nowak; Peter J. Facchini

Recent advances in DNA sequencing technology and analytical mass spectrometry are providing unprecedented opportunities to develop the functional genomics resources required to investigate complex biological processes in non-model plants. Opium poppy produces a wide variety of benzylisoquinoline alkaloids (BIAs), including the pharmaceutical compounds codeine, morphine, noscapine and papaverine. A functional genomics platform to identify novel BIA biosynthetic and regulatory genes in opium poppy has been established based on the differential metabolite profile of eight selected cultivars. Stem cDNA libraries from each of the eight opium poppy cultivars were subjected to 454 pyrosequencing and searchable expressed sequence tag databases were created from the assembled reads. These deep and integrated metabolite and transcript databases provide a nearly complete representation of the genetic and metabolic variances responsible for the differential occurrence of specific BIAs in each cultivar as demonstrated using the biochemically well characterized pathway from tyrosine to morphine. Similar correlations between the occurrence of specific transcripts and alkaloids effectively reveals candidate genes encoding uncharacterized biosynthetic enzymes as shown using cytochromes P450 potentially involved in the formation of papaverine and noscapine.


Nature Chemical Biology | 2015

Stereochemical inversion of ( S )-reticuline by a cytochrome P450 fusion in opium poppy

Scott C. Farrow; Jillian M. Hagel; Guillaume A. W. Beaudoin; Darcy C Burns; Peter J. Facchini

The gateway to morphine biosynthesis in opium poppy (Papaver somniferum) is the stereochemical inversion of (S)-reticuline since the enzyme yielding the first committed intermediate salutaridine is specific for (R)-reticuline. A fusion between a cytochrome P450 (CYP) and an aldo-keto reductase (AKR) catalyzes the S-to-R epimerization of reticuline via 1,2-dehydroreticuline. The reticuline epimerase (REPI) fusion was detected in opium poppy and in Papaver bracteatum, which accumulates thebaine. In contrast, orthologs encoding independent CYP and AKR enzymes catalyzing the respective synthesis and reduction of 1,2-dehydroreticuline were isolated from Papaver rhoeas, which does not accumulate morphinan alkaloids. An ancestral relationship between these enzymes is supported by a conservation of introns in the gene fusions and independent orthologs. Suppression of REPI transcripts using virus-induced gene silencing in opium poppy reduced levels of (R)-reticuline and morphinan alkaloids and increased the overall abundance of (S)-reticuline and its O-methylated derivatives. Discovery of REPI completes the isolation of genes responsible for known steps of morphine biosynthesis.


Frontiers in Plant Science | 2014

Functional diversity of 2-oxoglutarate/Fe(II)-dependent dioxygenases in plant metabolism

Scott C. Farrow; Peter J. Facchini

Oxidative enzymes catalyze many different reactions in plant metabolism. Among this suite of enzymes are the 2-oxoglutarate/Fe(II)-dependent dioxygenases (2-ODDs). Cytochromes P450 (CYPs) as often considered the most versatile oxidative enzymes in nature, but the diversity and complexity of reactions catalyzed by 2-ODDs is superior to the CYPs. The list of oxidative reactions catalyzed by 2-ODDs includes hydroxylations, demethylations, desaturations, ring closure, ring cleavage, epimerization, rearrangement, halogenation, and demethylenation. Furthermore, recent work, including the discovery of 2-ODDs involved in epigenetic regulation, and others catalyzing several characteristic steps in specialized metabolic pathways, support the argument that 2-ODDs are among the most versatile and important oxidizing biological catalysts. In this review, we survey and summarize the pertinent literature with a focus on several key reactions catalyzed by 2-ODDs, and discuss the significance and impact of these enzymes in plant metabolism.


Phytochemistry | 2012

Transcript and metabolite profiling in cell cultures of 18 plant species that produce benzylisoquinoline alkaloids.

Scott C. Farrow; Jillian M. Hagel; Peter J. Facchini

Benzylisoquinoline alkaloids (BIAs) are a large and diverse group of ~2500 specialized metabolites found predominantly in plants of the order Ranunculales. Research focused on BIA metabolism in a restricted number of plant species has identified many enzymes and cognate genes involved in the biosynthesis of compounds such as morphine, sanguinarine and berberine. However, the formation of most BIAs remains uncharacterized at the molecular biochemical level. Herein a compendium of sequence- and metabolite-profiling resources from 18 species of BIA-accumulating cell cultures was established, representing four related plant families. Our integrated approach consisted of the construction of EST libraries each containing approximately 3500 unigenes per species for a total of 58,787 unigenes. The EST libraries were manually triaged using known BIA-biosynthetic genes as queries to identify putative homologs with similar or potentially different functions. Sequence resources were analyzed in the context of the targeted metabolite profiles obtained for each cell culture using electrospray-ionization and collision-induced dissociation mass spectrometry. Fragmentation analysis was used for the identification or structural characterization coupled with the relative quantification of 72 BIAs, which establishes a key resource for future work on alkaloid biosynthesis. The metabolite profile obtained for each species provides a rational basis for the prediction of enzyme function in BIA metabolism. The metabolic frameworks assembled through the integration of transcript and metabolite profiles allow a comparison of BIA metabolism across several plant species and families. Taken together, these data represent an important tool for the discovery of BIA biosynthetic genes.


Plant Physiology | 2011

Adenosine kinase contributes to cytokinin interconversion in Arabidopsis

Sarah Schoor; Scott C. Farrow; Hanna Blaschke; Sanghyun Lee; Gregory Perry; Klaus von Schwartzenberg; Neil Emery; Barbara A. Moffatt

Purine salvage enzymes have been implicated, but not proven, to be involved in the interconversion of cytokinin (CK) bases, ribosides, and nucleotides. Here, we use Arabidopsis (Arabidopsis thaliana) lines silenced in adenosine kinase (ADK) expression to understand the contributions of this enzyme activity to in vivo CK metabolism. Both small interfering RNA- and artificial microRNA-mediated silencing of ADK led to impaired root growth, small, crinkled rosette leaves, and reduced apical dominance. Further examination of ADK-deficient roots and leaves revealed their irregular cell division. Root tips had uneven arrangements of root cap cells, reduced meristem sizes, and enlarged cells in the elongation zone; rosette leaves exhibited decreased cell size but increased cell abundance. Expression patterns of the cyclinB1;1::β-glucuronidase and Arabidopsis Response Regulator5::β-glucuronidase reporters in the ADK-deficient background were consistent with altered cell division and an increase in CK activity, respectively. In vivo feeding of ADK-deficient leaves with radiolabeled CK ribosides of isopentenyladenosine and zeatin showed a decreased flux into the corresponding CK nucleotides. Comprehensive high-performance liquid chromatography-tandem mass spectrometry analysis detected significantly higher levels of active CK ribosides in both sense ADK and artificial microADK. Taken together, these metabolic and phenotypic analyses of ADK-deficient lines indicate that ADK contributes to CK homeostasis in vivo.


Journal of Biological Chemistry | 2013

Dioxygenases catalyze O-demethylation and O,O-demethylenation with widespread roles in benzylisoquinoline alkaloid metabolism in opium poppy

Scott C. Farrow; Peter J. Facchini

Background: Thebaine 6-O-demethylase (T6ODM) and codeine O-demethylase (CODM) catalyze late steps of morphine biosynthesis in opium poppy. Results: New dealkylation reactions, including O,O-demethylenation, have been detected for T6ODM, CODM, and other 2-oxoglutarate/Fe(II)-dependent dioxygenases (ODDs). Virus-induced gene silencing supports physiological functions. Conclusion: Certain ODDs are multifunctional dealkylating enzymes with widespread roles in benzylisoquinoline alkaloid metabolism. Significance: Enzymes responsible for O-demethylation and O,O-demethylenation in plant alkaloid biosynthesis have been discovered. In opium poppy, the antepenultimate and final steps in morphine biosynthesis are catalyzed by the 2-oxoglutarate/Fe(II)-dependent dioxygenases, thebaine 6-O-demethylase (T6ODM) and codeine O-demethylase (CODM). Further investigation into the biochemical functions of CODM and T6ODM revealed extensive and unexpected roles for such enzymes in the metabolism of protopine, benzo[c]phenanthridine, and rhoeadine alkaloids. When assayed with a wide range of benzylisoquinoline alkaloids, CODM, T6ODM, and the functionally unassigned paralog DIOX2, renamed protopine O-dealkylase, showed novel and efficient dealkylation activities, including regio- and substrate-specific O-demethylation and O,O-demethylenation. Enzymes catalyzing O,O-demethylenation, which cleave a methylenedioxy bridge leaving two hydroxyl groups, have previously not been reported in plants. Similar cleavage of methylenedioxy bridges on substituted amphetamines is catalyzed by heme-dependent cytochromes P450 in mammals. Preferred substrates for O,O-demethylenation by CODM and protopine O-dealkylase were protopine alkaloids that serve as intermediates in the biosynthesis of benzo[c]phenanthridine and rhoeadine derivatives. Virus-induced gene silencing used to suppress the abundance of CODM and/or T6ODM transcripts indicated a direct physiological role for these enzymes in the metabolism of protopine alkaloids, and they revealed their indirect involvement in the formation of the antimicrobial benzo[c]phenanthridine sanguinarine and certain rhoeadine alkaloids in opium poppy.


BMC Plant Biology | 2015

Transcriptome analysis of 20 taxonomically related benzylisoquinoline alkaloid-producing plants

Jillian M. Hagel; Jeremy S. Morris; Eun-Jeong Lee; Isabel Desgagné-Penix; Crystal D. Bross; Limei Chang; Xue Chen; Scott C. Farrow; Ye Zhang; Jung Soh; Christoph W. Sensen; Peter J. Facchini

BackgroundBenzylisoquinoline alkaloids (BIAs) represent a diverse class of plant specialized metabolites sharing a common biosynthetic origin beginning with tyrosine. Many BIAs have potent pharmacological activities, and plants accumulating them boast long histories of use in traditional medicine and cultural practices. The decades-long focus on a select number of plant species as model systems has allowed near or full elucidation of major BIA pathways, including those of morphine, sanguinarine and berberine. However, this focus has created a dearth of knowledge surrounding non-model species, which also are known to accumulate a wide-range of BIAs but whose biosynthesis is thus far entirely unexplored. Further, these non-model species represent a rich source of catalyst diversity valuable to plant biochemists and emerging synthetic biology efforts.ResultsIn order to access the genetic diversity of non-model plants accumulating BIAs, we selected 20 species representing 4 families within the Ranunculales. RNA extracted from each species was processed for analysis by both 1) Roche GS-FLX Titanium and 2) Illumina GA/HiSeq platforms, generating a total of 40 deep-sequencing transcriptome libraries. De novo assembly, annotation and subsequent full-length coding sequence (CDS) predictions indicated greater success for most species using the Illumina-based platform. Assembled data for each transcriptome were deposited into an established web-based BLAST portal (www.phytometasyn.ca) to allow public access. Homology-based mining of libraries using BIA-biosynthetic enzymes as queries yielded ~850 gene candidates potentially involved in alkaloid biosynthesis. Expression analysis of these candidates was performed using inter-library FPKM normalization methods. These expression data provide a basis for the rational selection of gene candidates, and suggest possible metabolic bottlenecks within BIA metabolism. Phylogenetic analysis was performed for each of 15 different enzyme/protein groupings, highlighting many novel genes with potential involvement in the formation of one or more alkaloid types, including morphinan, aporphine, and phthalideisoquinoline alkaloids. Transcriptome resources were used to design and execute a case study of candidate N-methyltransferases (NMTs) from Glaucium flavum, which revealed predicted and novel enzyme activities.ConclusionsThis study establishes an essential resource for the isolation and discovery of 1) functional homologues and 2) entirely novel catalysts within BIA metabolism. Functional analysis of G. flavum NMTs demonstrated the utility of this resource and underscored the importance of empirical determination of proposed enzymatic function. Publically accessible, fully annotated, BLAST-accessible transcriptomes were not previously available for most species included in this report, despite the rich repertoire of bioactive alkaloids found in these plants and their importance to traditional medicine. The results presented herein provide essential sequence information and inform experimental design for the continued elucidation of BIA metabolism.


Plant Methods | 2012

Concurrent profiling of indole-3-acetic acid, abscisic acid, and cytokinins and structurally related purines by high-performance-liquid-chromatography tandem electrospray mass spectrometry.

Scott C. Farrow; R. J. Neil Emery

BackgroundCytokinins (CKs) are a group of plant growth regulators that are involved in several plant developmental processes. Despite the breadth of knowledge surrounding CKs and their diverse functions, much remains to be discovered about the full potential of CKs, including their relationship with the purine salvage pathway, and other phytohormones. The most widely used approach to query unknown facets of CK biology utilized functional genomics coupled with CK metabolite assays and screening of CK associated phenotypes. There are numerous different types of assays for determining CK quantity, however, none of these methods screen for the compendium of metabolites that are necessary for elucidating all roles, including purine salvage pathway enzymes in CK metabolism, and CK cross-talk with other phytohormones. Furthermore, all published analytical methods have drawbacks ranging from the required use of radiolabelled compounds, or hazardous derivatization reagents, poor sensitivity, lack of resolution between CK isomers and lengthy run times.ResultsIn this paper, a method is described for the concurrent extraction, purification and analysis of several CKs (freebases, ribosides, glucosides, nucleotides), purines (adenosine monophosphate, inosine, adenosine, and adenine), indole-3-acetic acid, and abscisic acid from hundred-milligram (mg) quantities of Arabidopsis thaliana leaf tissue. This method utilizes conventional Bieleski solvents extraction, solid phase purification, and is unique because of its diverse range of detectable analytes, and implementation of a conventional HPLC system with a fused core column that enables good sensitivity without the requirement of a UHPLC system. Using this method we were able to resolve CKs about twice as fast as our previous method. Similarly, analysis of adenosine, indole-3-acetic acid, and abscisic acid, was comparatively rapid. A further enhancement of the method was the utilization of a QTRAP 5500 mass analyzer, which improved upon several aspects of our previous analytical method carried out on a Quattro mass analyzer. Notable improvements included much superior sensitivity, and number of analytes detectable within a single run. Limits of detection ranged from 2 pM for (9G)Z to almost 750 pM for indole-3-acetic acid.ConclusionsThis method is well suited for functional genomics platforms tailored to understanding CK metabolism, CK interrelationships with purine recycling and associated hormonal cross-talk.


Journal of Experimental Botany | 2009

ABA inhibits germination but not dormancy release in mature imbibed seeds of Lolium rigidum Gaud

Danica E. Goggin; Kathryn J. Steadman; R. J. Neil Emery; Scott C. Farrow; Roberto L. Benech-Arnold; Stephen B. Powles

Dormancy release in imbibed annual ryegrass (Lolium rigidum Gaud.) seeds is promoted in the dark but inhibited in the light. The role of abscisic acid (ABA) in inhibition of dormancy release was found to be negligible, compared with its subsequent effect on germination of dormant and non-dormant seeds. Inhibitors of ABA metabolism had the expected effects on seed germination but did not influence ABA concentration, suggesting that they act upon other (unknown) factors regulating dormancy. Although gibberellin (GA) synthesis was required for germination, the influence of exogenous GA on both germination and dormancy release was minor or non-existent. Embryo ABA concentration was the same following treatments to promote (dark stratification) and inhibit (light stratification) dormancy release; exogenous ABA had no effect on this process. However, the sensitivity of dark-stratified seeds to ABA supplied during germination was lower than that of light-stratified seeds. Therefore, although ABA definitely plays a role in the germination of annual ryegrass seeds, it is not the major factor mediating inhibition of dormancy release in imbibed seeds.


Methods in Enzymology | 2012

Biochemical genomics for gene discovery in benzylisoquinoline alkaloid biosynthesis in opium poppy and related species.

Thu Thuy T. Dang; Akpevwe Onoyovwi; Scott C. Farrow; Peter J. Facchini

Benzylisoquinoline alkaloids (BIAs) are a large, diverse group of ∼2500 specialized plant metabolites. Many BIAs display potent pharmacological activities, including the narcotic analgesics codeine and morphine, the vasodilator papaverine, the cough suppressant and potential anticancer drug noscapine, the antimicrobial agents sanguinarine and berberine, and the muscle relaxant (+)-tubocurarine. Opium poppy remains the sole commercial source for codeine, morphine, and a variety of semisynthetic drugs, including oxycodone and buprenorphine, derived primarily from the biosynthetic pathway intermediate thebaine. Recent advances in transcriptomics, proteomics, and metabolomics have created unprecedented opportunities for isolating and characterizing novel BIA biosynthetic genes. Here, we describe the application of next-generation sequencing and cDNA microarrays for selecting gene candidates based on comparative transcriptome analysis. We outline the basic mass spectrometric techniques to perform deep proteome and targeted metabolite analyses on BIA-producing plant tissues and provide methodologies for functionally characterizing biosynthetic gene candidates through in vitro enzyme assays and transient gene silencing in planta.

Collaboration


Dive into the Scott C. Farrow's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge