Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Scott Dewell is active.

Publication


Featured researches published by Scott Dewell.


Nature | 2005

Genome sequencing in microfabricated high-density picolitre reactors

Marcel Margulies; Michael Egholm; William E. Altman; Said Attiya; Joel S. Bader; Lisa A. Bemben; Jan Berka; Michael S. Braverman; Yi-Ju Chen; Zhoutao Chen; Scott Dewell; Lei Du; Joseph M. Fierro; Xavier V. Gomes; Brian Godwin; Wen He; Scott Helgesen; Chun He Ho; Gerard P. Irzyk; Szilveszter C. Jando; Maria L. I. Alenquer; Thomas P. Jarvie; Kshama B. Jirage; Jong-Bum Kim; James Knight; Janna R. Lanza; John H. Leamon; Steven M. Lefkowitz; Ming Lei; Jing Li

The proliferation of large-scale DNA-sequencing projects in recent years has driven a search for alternative methods to reduce time and cost. Here we describe a scalable, highly parallel sequencing system with raw throughput significantly greater than that of state-of-the-art capillary electrophoresis instruments. The apparatus uses a novel fibre-optic slide of individual wells and is able to sequence 25 million bases, at 99% or better accuracy, in one four-hour run. To achieve an approximately 100-fold increase in throughput over current Sanger sequencing technology, we have developed an emulsion method for DNA amplification and an instrument for sequencing by synthesis using a pyrosequencing protocol optimized for solid support and picolitre-scale volumes. Here we show the utility, throughput, accuracy and robustness of this system by shotgun sequencing and de novo assembly of the Mycoplasma genitalium genome with 96% coverage at 99.96% accuracy in one run of the machine.


Cell | 2010

Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP

Markus Hafner; Markus Landthaler; Lukas Burger; Mohsen Khorshid; Jean Hausser; Philipp Berninger; Andrea Rothballer; Manuel Ascano; Anna-Carina Jungkamp; Mathias Munschauer; Alexander Ulrich; Greg Wardle; Scott Dewell; Mihaela Zavolan; Thomas Tuschl

RNA transcripts are subject to posttranscriptional gene regulation involving hundreds of RNA-binding proteins (RBPs) and microRNA-containing ribonucleoprotein complexes (miRNPs) expressed in a cell-type dependent fashion. We developed a cell-based crosslinking approach to determine at high resolution and transcriptome-wide the binding sites of cellular RBPs and miRNPs. The crosslinked sites are revealed by thymidine to cytidine transitions in the cDNAs prepared from immunopurified RNPs of 4-thiouridine-treated cells. We determined the binding sites and regulatory consequences for several intensely studied RBPs and miRNPs, including PUM2, QKI, IGF2BP1-3, AGO/EIF2C1-4 and TNRC6A-C. Our study revealed that these factors bind thousands of sites containing defined sequence motifs and have distinct preferences for exonic versus intronic or coding versus untranslated transcript regions. The precise mapping of binding sites across the transcriptome will be critical to the interpretation of the rapidly emerging data on genetic variation between individuals and how these variations contribute to complex genetic diseases.


Nature | 2010

Suppression of inflammation by a synthetic histone mimic

Edwige Nicodeme; Kate L. Jeffrey; Uwe Schaefer; Soren Beinke; Scott Dewell; Chun-wa Chung; Rohit Chandwani; Ivan Marazzi; Paul A. Wilson; Hervé Coste; Julia H. White; Jorge Kirilovsky; Charles M. Rice; Jose M. Lora; Rab K. Prinjha; Kevin Lee; Alexander Tarakhovsky

Interaction of pathogens with cells of the immune system results in activation of inflammatory gene expression. This response, although vital for immune defence, is frequently deleterious to the host due to the exaggerated production of inflammatory proteins. The scope of inflammatory responses reflects the activation state of signalling proteins upstream of inflammatory genes as well as signal-induced assembly of nuclear chromatin complexes that support mRNA expression. Recognition of post-translationally modified histones by nuclear proteins that initiate mRNA transcription and support mRNA elongation is a critical step in the regulation of gene expression. Here we present a novel pharmacological approach that targets inflammatory gene expression by interfering with the recognition of acetylated histones by the bromodomain and extra terminal domain (BET) family of proteins. We describe a synthetic compound (I-BET) that by ‘mimicking’ acetylated histones disrupts chromatin complexes responsible for the expression of key inflammatory genes in activated macrophages, and confers protection against lipopolysaccharide-induced endotoxic shock and bacteria-induced sepsis. Our findings suggest that synthetic compounds specifically targeting proteins that recognize post-translationally modified histones can serve as a new generation of immunomodulatory drugs.


Cell | 2010

Distinct Factors Control Histone Variant H3.3 Localization at Specific Genomic Regions

Aaron D. Goldberg; Laura A. Banaszynski; Kyung-Min Noh; Peter W. Lewis; Simon J. Elsaesser; Sonja C. Stadler; Scott Dewell; Martin Law; Xingyi Guo; Xuan Li; Duancheng Wen; Ariane Chapgier; Russell DeKelver; Jeffrey C. Miller; Ya Li Lee; Elizabeth A. Boydston; Michael C. Holmes; Philip D. Gregory; John M. Greally; Shahin Rafii; Chingwen Yang; Peter J. Scambler; David Garrick; Richard J. Gibbons; Douglas R. Higgs; Ileana M. Cristea; Fyodor D. Urnov; Deyou Zheng; C. David Allis

The incorporation of histone H3 variants has been implicated in the epigenetic memory of cellular state. Using genome editing with zinc-finger nucleases to tag endogenous H3.3, we report genome-wide profiles of H3 variants in mammalian embryonic stem cells and neuronal precursor cells. Genome-wide patterns of H3.3 are dependent on amino acid sequence and change with cellular differentiation at developmentally regulated loci. The H3.3 chaperone Hira is required for H3.3 enrichment at active and repressed genes. Strikingly, Hira is not essential for localization of H3.3 at telomeres and many transcription factor binding sites. Immunoaffinity purification and mass spectrometry reveal that the proteins Atrx and Daxx associate with H3.3 in a Hira-independent manner. Atrx is required for Hira-independent localization of H3.3 at telomeres and for the repression of telomeric RNA. Our data demonstrate that multiple and distinct factors are responsible for H3.3 localization at specific genomic locations in mammalian cells.


Nature | 2012

FMRP targets distinct mRNA sequence elements to regulate protein expression

Manuel Ascano; Neelanjan Mukherjee; Pradeep Bandaru; Jason B. Miller; Jeffrey D. Nusbaum; David L. Corcoran; Christine Langlois; Mathias Munschauer; Scott Dewell; Markus Hafner; Zev Williams; Uwe Ohler; Thomas Tuschl

Fragile X syndrome (FXS) is a multi-organ disease that leads to mental retardation, macro-orchidism in males and premature ovarian insufficiency in female carriers. FXS is also a prominent monogenic disease associated with autism spectrum disorders (ASDs). FXS is typically caused by the loss of fragile X mental retardation 1 (FMR1) expression, which codes for the RNA-binding protein FMRP. Here we report the discovery of distinct RNA-recognition elements that correspond to the two independent RNA-binding domains of FMRP, in addition to the binding sites within the messenger RNA targets for wild-type and I304N mutant FMRP isoforms and the FMRP paralogues FXR1P and FXR2P (also known as FXR1 and FXR2). RNA-recognition-element frequency, ratio and distribution determine target mRNA association with FMRP. Among highly enriched targets, we identify many genes involved in ASD and show that FMRP affects their protein levels in human cell culture, mouse ovaries and human brain. Notably, we discovered that these targets are also dysregulated in Fmr1−/− mouse ovaries showing signs of premature follicular overdevelopment. These results indicate that FMRP targets share signalling pathways across different cellular contexts. As the importance of signalling pathways in both FXS and ASD is becoming increasingly apparent, our results provide a ranked list of genes as basis for the pursuit of new therapeutic targets for these neurological disorders.


Genes & Development | 2009

Four histone variants mark the boundaries of polycistronic transcription units in Trypanosoma brucei

T. N. Siegel; Doeke R. Hekstra; L. E. Kemp; Luisa M. Figueiredo; Joanna E. Lowell; David Fenyö; Xianlong Wang; Scott Dewell; George A.M. Cross

Unusually for a eukaryote, genes transcribed by RNA polymerase II (pol II) in Trypanosoma brucei are arranged in polycistronic transcription units. With one exception, no pol II promoter motifs have been identified, and how transcription is initiated remains an enigma. T. brucei has four histone variants: H2AZ, H2BV, H3V, and H4V. Using chromatin immunoprecipitation (ChIP) and sequencing (ChIP-seq) to examine the genome-wide distribution of chromatin components, we show that histones H4K10ac, H2AZ, H2BV, and the bromodomain factor BDF3 are enriched up to 300-fold at probable pol II transcription start sites (TSSs). We also show that nucleosomes containing H2AZ and H2BV are less stable than canonical nucleosomes. Our analysis also identifies >60 unexpected TSS candidates and reveals the presence of long guanine runs at probable TSSs. Apparently unique to trypanosomes, additional histone variants H3V and H4V are enriched at probable pol II transcription termination sites. Our findings suggest that histone modifications and histone variants play crucial roles in transcription initiation and termination in trypanosomes and that destabilization of nucleosomes by histone variants is an evolutionarily ancient and general mechanism of transcription initiation, demonstrated in an organism in which general pol II transcription factors have been elusive.


Cell | 2011

Recognition of a Mononucleosomal Histone Modification Pattern by BPTF via Multivalent Interactions.

Alexander J. Ruthenburg; Haitao Li; Thomas A. Milne; Scott Dewell; Robert K. McGinty; Melanie Yuen; Beatrix Ueberheide; Yali Dou; Tom W. Muir; Dinshaw J. Patel; C. David Allis

Little is known about how combinations of histone marks are interpreted at the level of nucleosomes. The second PHD finger of human BPTF is known to specifically recognize histone H3 when methylated on lysine 4 (H3K4me2/3). Here, we examine how additional heterotypic modifications influence BPTF binding. Using peptide surrogates, three acetyllysine ligands are indentified for a PHD-adjacent bromodomain in BPTF via systematic screening and biophysical characterization. Although the bromodomain displays limited discrimination among the three possible acetyllysines at the peptide level, marked selectivity is observed for only one of these sites, H4K16ac, in combination with H3K4me3 at the mononucleosome level. In support, these two histone marks constitute a unique trans-histone modification pattern that unambiguously resides within a single nucleosomal unit in human cells, and this module colocalizes with these marks in the genome. Together, our data call attention to nucleosomal patterning of covalent marks in dictating critical chromatin associations.


Nucleic Acids Research | 2010

Genome-wide analysis of mRNA abundance in two life-cycle stages of Trypanosoma brucei and identification of splicing and polyadenylation sites

Tim Nicolai Siegel; Doeke R. Hekstra; Xuning Wang; Scott Dewell; George A.M. Cross

Transcription of protein-coding genes in trypanosomes is polycistronic and gene expression is primarily regulated by post-transcriptional mechanisms. Sequence motifs in the untranslated regions regulate mRNA trans-splicing and RNA stability, yet where UTRs begin and end is known for very few genes. We used high-throughput RNA-sequencing to determine the genome-wide steady-state mRNA levels (‘transcriptomes’) for ∼90% of the genome in two stages of the Trypanosoma brucei life cycle cultured in vitro. Almost 6% of genes were differentially expressed between the two life-cycle stages. We identified 5′ splice-acceptor sites (SAS) and polyadenylation sites (PAS) for 6959 and 5948 genes, respectively. Most genes have between one and three alternative SAS, but PAS are more dispersed. For 488 genes, SAS were identified downstream of the originally assigned initiator ATG, so a subsequent in-frame ATG presumably designates the start of the true coding sequence. In some cases, alternative SAS would give rise to mRNAs encoding proteins with different N-terminal sequences. We could identify the introns in two genes known to contain them, but found no additional genes with introns. Our study demonstrates the usefulness of the RNA-seq technology to study the transcriptional landscape of an organism whose genome has not been fully annotated.


Nature | 2010

ETV1 is a lineage survival factor that cooperates with KIT in gastrointestinal stromal tumours

Ping Chi; Yu Chen; Lei Zhang; Xingyi Guo; John Wongvipat; Tambudzai Shamu; Jonathan A. Fletcher; Scott Dewell; Robert G. Maki; Deyou Zheng; Cristina R. Antonescu; C. David Allis; Charles L. Sawyers

Gastrointestinal stromal tumour (GIST) is the most common human sarcoma and is primarily defined by activating mutations in the KIT or PDGFRA receptor tyrosine kinases1,2. KIT is highly expressed in interstitial cells of Cajal (ICCs)—the presumed cell of origin for GIST—as well as in hematopoietic stem cells, melanocytes, mast cells and germ cells2,3. Yet, families harbouring germline activating KIT mutations and mice with knock-in Kit mutations almost exclusively develop ICC hyperplasia and GIST4–7, suggesting that the cellular context is important for KIT to mediated oncogenesis. Here we show that the ETS family member ETV1 is highly expressed in the subtypes of ICCs sensitive to oncogenic KIT mediated transformation8, and is required for their development. In addition, ETV1 is universally highly expressed in GISTs and is required for growth of imatinib-sensitive and resistant GIST cell lines. Transcriptome profiling and global analyses of ETV1-binding sites suggest that ETV1 is a master regulator of an ICC-GIST-specific transcription network mainly through enhancer binding. The ETV1 transcriptional program is further regulated by activated KIT, which prolongs ETV1 protein stability and cooperates with ETV1 to promote tumourigenesis. We propose that GIST arises from ICCs with high levels of endogenous ETV1 expression that, when coupled with an activating KIT mutation, drives an oncogenic ETS transcription program. This differs from other ETS-dependent tumours such as prostate cancer, melanoma, and Ewing sarcoma where genomic translocation or amplification drives aberrant ETS expression9–11 and represents a novel mechanism of oncogenic transcription factor activation.Gastrointestinal stromal tumour (GIST) is the most common human sarcoma and is primarily defined by activating mutations in the KIT or PDGFRA receptor tyrosine kinases. KIT is highly expressed in interstitial cells of Cajal (ICCs)—the presumed cell of origin for GIST—as well as in haematopoietic stem cells, melanocytes, mast cells and germ cells. Yet, families harbouring germline activating KIT mutations and mice with knock-in Kit mutations almost exclusively develop ICC hyperplasia and GIST, suggesting that the cellular context is important for KIT to mediate oncogenesis. Here we show that the ETS family member ETV1 is highly expressed in the subtypes of ICCs sensitive to oncogenic KIT mediated transformation, and is required for their development. In addition, ETV1 is universally highly expressed in GISTs and is required for growth of imatinib-sensitive and resistant GIST cell lines. Transcriptome profiling and global analyses of ETV1-binding sites suggest that ETV1 is a master regulator of an ICC-GIST-specific transcription network mainly through enhancer binding. The ETV1 transcriptional program is further regulated by activated KIT, which prolongs ETV1 protein stability and cooperates with ETV1 to promote tumorigenesis. We propose that GIST arises from ICCs with high levels of endogenous ETV1 expression that, when coupled with an activating KIT mutation, drives an oncogenic ETS transcriptional program. This differs from other ETS-dependent tumours such as prostate cancer, melanoma and Ewing sarcoma where genomic translocation or amplification drives aberrant ETS expression. It also represents a novel mechanism of oncogenic transcription factor activation.


Nature | 2012

Suppression of the antiviral response by an influenza histone mimic

Ivan Marazzi; Jessica Sook Yuin Ho; Jae-Hoon Kim; Balaji Manicassamy; Scott Dewell; Randy A. Albrecht; Chris W. Seibert; Uwe Schaefer; Kate L. Jeffrey; Rab K. Prinjha; Kevin Lee; Adolfo García-Sastre; Robert G. Roeder; Alexander Tarakhovsky

Viral infection is commonly associated with virus-driven hijacking of host proteins. Here we describe a novel mechanism by which influenza virus affects host cells through the interaction of influenza non-structural protein 1 (NS1) with the infected cell epigenome. We show that the NS1 protein of influenza A H3N2 subtype possesses a histone-like sequence (histone mimic) that is used by the virus to target the human PAF1 transcription elongation complex (hPAF1C). We demonstrate that binding of NS1 to hPAF1C depends on the NS1 histone mimic and results in suppression of hPAF1C-mediated transcriptional elongation. Furthermore, human PAF1 has a crucial role in the antiviral response. Loss of hPAF1C binding by NS1 attenuates influenza infection, whereas hPAF1C deficiency reduces antiviral gene expression and renders cells more susceptible to viruses. We propose that the histone mimic in NS1 enables the influenza virus to affect inducible gene expression selectively, thus contributing to suppression of the antiviral response.

Collaboration


Dive into the Scott Dewell's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Deyou Zheng

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Manuel Ascano

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar

Markus Hafner

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar

Thomas Tuschl

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mathias Munschauer

Max Delbrück Center for Molecular Medicine

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge