Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Scott M. Turner is active.

Publication


Featured researches published by Scott M. Turner.


Journal of Clinical Investigation | 1995

Short-term alterations in carbohydrate energy intake in humans. Striking effects on hepatic glucose production, de novo lipogenesis, lipolysis, and whole-body fuel selection.

Jean-Marc Schwarz; Richard A. Neese; Scott M. Turner; D Dare; Marc K. Hellerstein

Short-term alterations in dietary carbohydrate (CHO) energy are known to alter whole-body fuel selection in humans, but the metabolic mechanisms remain unknown. We used stable isotope-mass spectrometric methods with indirect calorimetry in normal subjects to quantify the metabolic response to six dietary phases (5 d each), ranging from 50% surplus CHO (+50% CHO) to 50% deficient CHO (-50% CHO), and 50% surplus fat (+50% fat). Fasting hepatic glucose production (HGP) varied by > 40% from deficient to surplus CHO diets (1.78 +/- 0.08 vs 2.43 +/- 0.09 mg/kg per min, P < 0.01). Increased HGP on surplus CHO occurred despite significantly higher serum insulin concentrations. Lipolysis correlated inversely with CHO intake as did the proportion of whole-body lipolytic flux oxidized. Fractional de novo hepatic lipogenesis (DNL) increased more than 10-fold on surplus CHO and was unmeasurable on deficient CHO diets; thus, the preceding 5-d CHO intake could be inferred from DNL. Nevertheless, absolute hepatic DNL accounted for < 5g fatty acids synthesized per day even on +50% CHO. Whole-body CHO oxidation increased sixfold and fat oxidation decreased > 90% on surplus CHO diets. CHO oxidation was highly correlated with HGP (r2= 0.60). HGP could account for 85% of fasting CHO oxidation on +25% CHO and 67% on +50% CHO diets. Some oxidation of intracellular CHO stores was therefore also occurring. +50% fat diet had no effects on HGP, DNL, or fuel selection. We conclude that altered CHO intake alters HGP specifically and in a dose-dependent manner, that HGP may mediate the effects of CHO on whole-body fuel selection both by providing substrate and by altering serum insulin concentrations, that altered lipolysis and tissue oxidation efficiency contribute to changes in fat oxidation, and that surplus CHO is not substantially converted by the liver to fat as it spares fat oxidation, but that fractional DNL may nevertheless be a qualitative marker of recent CHO intake.


Journal of Lipid Research | 2006

Mice fed a lipogenic methionine-choline-deficient diet develop hypermetabolism coincident with hepatic suppression of SCD-1

Gizem Rizki; Lorenzo Arnaboldi; Bianca Gabrielli; Jim Yan; Gene S. Lee; Ray K. Ng; Scott M. Turner; Thomas M. Badger; Robert E. Pitas; Jacquelyn J. Maher

Lipogenic diets that are completely devoid of methionine and choline (MCD) induce hepatic steatosis. MCD feeding also provokes systemic weight loss, for unclear reasons. In this study, we found that MCD feeding causes profound hepatic suppression of the gene encoding stearoyl-coenzyme A desaturase-1 (SCD-1), an enzyme whose regulation has significant effects on metabolic rate. Within 7 days of MCD exposure, hepatic SCD-1 mRNA decreased to nearly undetectable levels. By day 21, SCD-1 protein was absent from hepatic microsomes and fatty acids showed a decrease in monounsaturated species. These changes in hepatic SCD-1 were accompanied by signs of hypermetabolism. Calorimetry revealed that MCD-fed mice consumed 37% more energy than control mice (P = 0.0003). MCD feeding also stimulated fatty acid oxidation, although fatty oxidation genes were not significantly upregulated. Interestingly, despite their increased metabolic rate, MCD-fed mice did not increase their food consumption, and as a result, they lost 26% of their body weight in 21 days. In summary, MCD feeding suppresses SCD-1 in the liver, which likely contributes to hypermetabolism and weight loss. MCD feeding also induces hepatic steatosis, by an independent mechanism. Viewed together, these two disparate consequences of MCD feeding (weight loss and hepatic steatosis) give the appearance of an unusual form of lipodystrophy.


The FASEB Journal | 2011

Long-term synthesis rates of skeletal muscle DNA and protein are higher during aerobic training in older humans than in sedentary young subjects but are not altered by protein supplementation

Matthew M. Robinson; Scott M. Turner; Marc K. Hellerstein; Karyn L. Hamilton; Benjamin F. Miller

Consuming protein following exercise has been shown to stimulate protein synthesis acutely in skeletal muscle and has been recommended to prevent sarcopenia. It is not known, however, whether acute stimulation persists long term or includes muscle cell division. We asked here whether consuming protein following exercise during aerobic training increases long‐term protein and DNA synthesis rates in skeletal muscle of adult humans. Sixteen previously untrained participants (50 ± 8 yr) consumed either a carbohydrate or carbohydrate and protein drink following each session during 6 wk of treadmill training. A younger untrained group provided a nonexercising comparison. Participants were administered heavy water (2H2O; deuterium oxide) continuously for 6 wk to isotopically label newly synthesized skeletal muscle proteins and DNA. Muscle biopsies were performed after 6 wk of training. Contrary to acute studies, consuming protein after exercise did not increase skeletal muscle protein synthesis rates. In contrast, muscle protein synthesis, DNA, and phospholipid synthesis were significantly higher in the older exercise groups than the younger sedentary group. The higher DNA replication rate could not be attributed to mitochondrial DNA and may be due to satellite cell activation. We conclude that postexercise protein supplementation does not increase rates of mixed protein synthesis over 6 wk and that aerobic exercise may stimulate long‐term cell division (DNA synthesis) in skeletal muscle of humans. Measurements of long‐term synthesis rates provide important insights into aging and exercise adaptations.—Robinson, M. M., Turner, S. M., Hellerstein, M. K., Hamilton, K. L., Miller, B. F. Long‐term synthesis rates of skeletal muscle DNA and protein are higher during aerobic training in older humans than in sedentary young subjects but are not altered by protein supplementation. FASEB J. 25, 3240‐3249 (2011). www.fasebj.org


Arthritis & Rheumatism | 2015

Potential Mechanisms Leading to the Abnormal Lipid Profile in Patients With Rheumatoid Arthritis Versus Healthy Volunteers and Reversal by Tofacitinib

Christina Charles-Schoeman; R. Fleischmann; Jean Davignon; Howard Schwartz; Scott M. Turner; Carine Beysen; Mark Milad; Marc K. Hellerstein; Zhen Luo; Irina Kaplan; R. Riese; Andrea Zuckerman; Iain B. McInnes

Tofacitinib is an oral JAK inhibitor for the treatment of rheumatoid arthritis (RA). Systemic inflammation is proposed to play a fundamental role in the altered lipid metabolism associated with RA; however, the underlying mechanisms are unknown. We undertook this study to compare cholesterol and lipoprotein kinetics in patients with active RA with those in matched healthy volunteers.


Analytical Biochemistry | 2012

Measurement of human plasma proteome dynamics with 2H2O and liquid chromatography tandem mass spectrometry

John C. Price; William E. Holmes; Kelvin Li; Nicholas A. Floreani; Richard A. Neese; Scott M. Turner; Marc K. Hellerstein

Dysfunction of protein turnover is a feature of many human diseases, and proteins are substrates in important biological processes. Currently, no method exists for the measurement of global protein turnover (i.e., proteome dynamics) that can be applied in humans. Here we describe the use of metabolic labeling with deuterium ((2)H) from (2)H(2)O and liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis of mass isotopomer patterns to measure protein turnover. We show that the positions available for (2)H label incorporation in vivo can be calculated using peptide sequence. The isotopic incorporation values calculated by combinatorial analysis of mass isotopomer patterns in peptides correlate very closely with values established for individual amino acids. Inpatient and outpatient heavy water labeling protocols resulted in (2)H label incorporation sufficient for reproducible quantitation in humans. Replacement rates were similar for peptides deriving from the same protein. Using a kinetic model to account for the time course of each individuals (2)H(2)O enrichment curves, dynamics of approximately 100 proteins with half-lives ranging from 0.4 to 40 days were measured using 8 μl of plasma. The measured rates were consistent with literature values. This method can be used to measure in vivo proteome homeostasis in humans in disease and during therapeutic interventions.


Journal of Lipid Research | 2009

Dietary sucrose is essential to the development of liver injury in the methionine-choline-deficient model of steatohepatitis

Michael K. Pickens; Jim Yan; Raymond Ng; Hisanobu Ogata; James P. Grenert; Carine Beysen; Scott M. Turner; Jacquelyn J. Maher

Methionine-choline-deficient (MCD) diets cause steatohepatitis in rodents and are used to study the pathophysiology of fatty liver disease in human beings. The most widely used commercial MCD formulas not only lack methionine and choline but also contain excess sucrose and fat. The objective of this study was to determine whether dietary sucrose in the MCD formula plays a role in the pathogenesis of MCD-related liver disease. We prepared two custom MCD formulas, one containing sucrose as the principal carbohydrate and the other substituting sucrose with starch. Mice fed the sucrose-enriched formula developed typical features of MCD-related liver disease, including hepatic steatosis, hepatocellular apoptosis, alanine aminotransferase elevation, lipid peroxidation, and hepatic inflammation. In contrast, mice fed MCD-starch were significantly protected against liver injury. MCD-sucrose and MCD-starch mice displayed identical diet-related abnormalities in hepatic fatty acid uptake and triglyceride secretion. Hepatic de novo lipogenesis and triglyceride synthesis, however, were 2 times higher in MCD-sucrose mice than MCD-starch mice (P < 0.01). Hepatic lipid analysis revealed accumulation of excess saturated fatty acids in MCD-sucrose mice that correlated with hepatocellular injury. Overall, the results indicate that dietary sucrose is critical to the pathogenesis of MCD-mediated steatohepatitis. They suggest that saturated fatty acids, which are products of de novo lipogenesis, are mediators of hepatic toxicity in this model of liver disease.


Diabetes | 2014

microRNA-29 fine-tunes the expression of key FOXA2-activated lipid metabolism genes and is dysregulated in animal models of insulin resistance and diabetes

C. Lisa Kurtz; Bailey C. E. Peck; Emily E. Fannin; Carine Beysen; Ji Miao; Stuart R Landstreet; Shengli Ding; Vandana Turaga; P. Kay Lund; Scott M. Turner; Sudha B. Biddinger; Kasey C. Vickers; Praveen Sethupathy

MicroRNAs (miRNAs) have emerged as biomarkers of metabolic status, etiological factors in complex disease, and promising drug targets. Recent reports suggest that miRNAs are critical regulators of pathways underlying the pathophysiology of type 2 diabetes. In this study, we demonstrate by deep sequencing and real-time quantitative PCR that hepatic levels of Foxa2 mRNA and miR-29 are elevated in a mouse model of diet-induced insulin resistance. We also show that Foxa2 and miR-29 are significantly upregulated in the livers of Zucker diabetic fatty (fa/fa) rats and that the levels of both returned to normal upon treatment with the insulin-sensitizing agent pioglitazone. We present evidence that miR-29 expression in human hepatoma cells is controlled in part by FOXA2, which is known to play a critical role in hepatic energy homeostasis. Moreover, we demonstrate that miR-29 fine-tunes FOXA2-mediated activation of key lipid metabolism genes, including PPARGC1A, HMGCS2, and ABHD5. These results suggest that miR-29 is an important regulatory factor in normal metabolism and may represent a novel therapeutic target in type 2 diabetes and related metabolic syndromes.


Molecular & Cellular Proteomics | 2014

Proteomic Analysis of Altered Extracellular Matrix Turnover in Bleomycin-induced Pulmonary Fibrosis

Martin L. Decaris; Michelle Gatmaitan; Simplicia FlorCruz; Flora Luo; Kelvin Li; William E. Holmes; Marc K. Hellerstein; Scott M. Turner; Claire Emson

Fibrotic disease is characterized by the pathological accumulation of extracellular matrix (ECM) proteins. Surprisingly, very little is known about the synthesis and degradation rates of the many proteins and proteoglycans that constitute healthy or pathological extracellular matrix. A comprehensive understanding of altered ECM protein synthesis and degradation during the onset and progression of fibrotic disease would be immensely valuable. We have developed a dynamic proteomics platform that quantifies the fractional synthesis rates of large numbers of proteins via stable isotope labeling and LC/MS-based mass isotopomer analysis. Here, we present the first broad analysis of ECM protein kinetics during the onset of experimental pulmonary fibrosis. Mice were labeled with heavy water for up to 21 days following the induction of lung fibrosis with bleomycin. Lung tissue was subjected to sequential protein extraction to fractionate cellular, guanidine-soluble ECM proteins and residual insoluble ECM proteins. Fractional synthesis rates were calculated for 34 ECM proteins or protein subunits, including collagens, proteoglycans, and microfibrillar proteins. Overall, fractional synthesis rates of guanidine-soluble ECM proteins were faster than those of insoluble ECM proteins, suggesting that the insoluble fraction reflected older, more mature matrix components. This was confirmed through the quantitation of pyridinoline cross-links in each protein fraction. In fibrotic lung tissue, there was a significant increase in the fractional synthesis of unique sets of matrix proteins during early (pre-1 week) and late (post-1 week) fibrotic response. Furthermore, we isolated fast turnover subpopulations of several ECM proteins (e.g. type I collagen) based on guanidine solubility, allowing for accelerated detection of increased synthesis of typically slow-turnover protein populations. This establishes the presence of multiple kinetic pools of pulmonary collagen in vivo with altered turnover rates during evolving fibrosis. These data demonstrate the utility of dynamic proteomics in analyzing changes in ECM protein turnover associated with the onset and progression of fibrotic disease.


Molecular & Cellular Proteomics | 2012

The Effect of Long Term Calorie Restriction on in Vivo Hepatic Proteostatis: A Novel Combination of Dynamic and Quantitative Proteomics

John C. Price; Cyrus F. Khambatta; Kelvin Kaiwen Li; Matthew D. Bruss; Mahalakshmi Shankaran; Marcy Dalidd; Nicholas A. Floreani; Lindsay S. Roberts; Scott M. Turner; William E. Holmes; Marc K. Hellerstein

Calorie restriction (CR) promotes longevity. A prevalent mechanistic hypothesis explaining this effect suggests that protein degradation, including mitochondrial autophagy, is increased with CR, removing damaged proteins and improving cellular fitness. At steady state, increased catabolism must be balanced by increasing mitochondrial biogenesis and protein synthesis, resulting in faster protein replacement rates. To test this hypothesis, we measured replacement kinetics and relative concentrations of hundreds of proteins in vivo in long-term CR and ad libitum-fed mice using metabolic 2H2O-labeling combined with the Stable Isotope Labeling in Mammals protocol and LC-MS/MS analysis of mass isotopomer abundances in tryptic peptides. CR reduced absolute synthesis and breakdown rates of almost all measured hepatic proteins and prolonged the half-lives of most (∼80%), particularly mitochondrial proteins (but not ribosomal subunits). Proteins with related functions exhibited coordinated changes in relative concentration and replacement rates. In silico expression pathway interrogation allowed the testing of potential regulators of altered network dynamics (e.g. peroxisome proliferator-activated receptor gamma coactivator 1-alpha). In summary, our combination of dynamic and quantitative proteomics suggests that long-term CR reduces mitochondrial biogenesis and mitophagy. Our findings contradict the theory that CR increases mitochondrial protein turnover and provide compelling evidence that cellular fitness is accompanied by reduced global protein synthetic burden.


Matrix Biology | 2014

Extracellular matrix proteins: A positive feedback loop in lung fibrosis?

Marjolein E. Blaauboer; Fee R. Boeijen; Claire Emson; Scott M. Turner; Behrouz Zandieh-Doulabi; Roeland Hanemaaijer; Theo H. Smit; Reinout Stoop; Vincent Everts

Lung fibrosis is characterized by excessive deposition of extracellular matrix. This not only affects tissue architecture and function, but it also influences fibroblast behavior and thus disease progression. Here we describe the expression of elastin, type V collagen and tenascin C during the development of bleomycin-induced lung fibrosis. We further report in vitro experiments clarifying both the effect of myofibroblast differentiation on this expression and the effect of extracellular elastin on myofibroblast differentiation. Lung fibrosis was induced in female C57Bl/6 mice by bleomycin instillation. Animals were sacrificed at zero to five weeks after fibrosis induction. Collagen synthesized during the week prior to sacrifice was labeled with deuterium. After sacrifice, lung tissue was collected for determination of new collagen formation, microarray analysis, and histology. Human lung fibroblasts were grown on tissue culture plastic or BioFlex culture plates coated with type I collagen or elastin, and stimulated to undergo myofibroblast differentiation by 0-10 ng/ml transforming growth factor (TGF)β1. mRNA expression was analyzed by quantitative real-time PCR. New collagen formation during bleomycin-induced fibrosis was highly correlated to gene expression of elastin, type V collagen and tenascin C. At the protein level, elastin, type V collagen and tenascin C were highly expressed in fibrotic areas as seen in histological sections of the lung. Type V collagen and tenascin C were transiently increased. Human lung fibroblasts stimulated with TGFβ1 strongly increased gene expression of elastin, type V collagen and tenascin C. The extracellular presence of elastin increased gene expression of the myofibroblastic markers α smooth muscle actin and type I collagen. The extracellular matrix composition changes dramatically during the development of lung fibrosis. The increased levels of elastin, type V collagen and tenascin C are probably the result of increased expression by fibroblastic cells; reversely, elastin influences myofibroblast differentiation. This suggests a reciprocal interaction between fibroblasts and the extracellular matrix composition that could enhance the development of lung fibrosis.

Collaboration


Dive into the Scott M. Turner's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kelvin Li

J. Craig Venter Institute

View shared research outputs
Top Co-Authors

Avatar

Claire Emson

University of California

View shared research outputs
Top Co-Authors

Avatar

Elizabeth Murphy

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Glen Lindwall

University of California

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge