Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Scott McClung is active.

Publication


Featured researches published by Scott McClung.


Molecular & Cellular Proteomics | 2009

Functional Differentiation of Brassica napus Guard Cells and Mesophyll Cells Revealed by Comparative Proteomics

Mengmeng Zhu; Shaojun Dai; Scott McClung; Xiufeng Yan; Sixue Chen

Guard cells are highly specialized cells that form tiny pores called stomata on the leaf surface. The opening and closing of stomata control leaf gas exchange and water transpiration as well as allow plants to quickly respond and adjust to new environmental conditions. Mesophyll cells are specialized for photosynthesis. Despite the phenotypic and obvious functional differences between the two types of cells, the full protein components and their functions have not been explored but are addressed here through a global comparative proteomics analysis of purified guard cells and mesophyll cells. With the use of isobaric tags for relative and absolute quantification (iTRAQ) tagging and two-dimensional liquid chromatography mass spectrometry, we identified 1458 non-redundant proteins in both guard cells and mesophyll cells of Brassica napus leaves. Based on stringent statistical criteria, a total of 427 proteins were quantified, and 74 proteins were found to be enriched in guard cells. Proteins involved in energy (respiration), transport, transcription (nucleosome), cell structure, and signaling are preferentially expressed in guard cells. We observed several well characterized guard cell proteins. By contrast, proteins involved in photosynthesis, starch synthesis, disease/defense/stress, and other metabolisms are preferentially represented in mesophyll cells. Of the identified proteins, 110 have corresponding microarray data obtained from Arabidopsis guard cells and mesophyll cells. About 72% of these proteins follow the same trend of expression at the transcript and protein levels. For the rest of proteins, the correlation between proteomics data and the microarray data is poor. This highlights the importance of quantitative profiling at the protein level. Collectively this work represents the most extensive proteomic description of B. napus guard cells and has improved our knowledge of the functional specification of guard cells and mesophyll cells.


Journal of Proteome Research | 2009

Quantitative proteomic profiles of androgen receptor signaling in the liver of fathead minnows (Pimephales promelas).

Christopher J. Martyniuk; Sophie Alvarez; Scott McClung; Daniel L. Villeneuve; Gerald T. Ankley; Nancy D. Denslow

Androgenic chemicals are present in the environment at concentrations that impair reproductive processes in fish. The objective of this experiment was to identify proteins and cell processes mediated through androgen receptor signaling using an androgen receptor agonist (17beta-trenbolone) and antagonist (flutamide) in the liver. Female fathead minnows were exposed to nominal concentrations of either 17beta-trenbolone (0.05, 0.5, or 5 microg/L), flutamide (50, 150, or 500 microg/L), or a mixture (500 microg flutamide/L and 0.5 microg 17beta-trenbolone/L) for 48 h. The iTRAQ method was used to label peptides after protein extraction and trypsin-digestion from livers of untreated controls or from fish treated with 17beta-trenbolone (5 microg/L), flutamide (500 microg/L), or a mixture of both compounds. Forty-five proteins were differentially altered by one or more treatments (p<0.05). Many altered proteins were involved in cellular metabolism (e.g., glyceraldehyde 3-phosphate dehydrogenase, phosphoglycerate mutase), general and oxidative stress response (e.g., superoxide dismutase and heat shock proteins), and the regulation of translation (e.g., ribosomal proteins). Cellular pathway analysis identified additional signaling cascades activated or inhibited by flutamide that may not be androgen receptor mediated. We also compared changes in select proteins to changes in their mRNA levels and observed, in general, that proteins and mRNA changes did not correlate, suggesting complex regulation at the level of both the transcriptome and proteome. It is concluded that both transcriptomic and proteomic approaches offer unique and complementary insights into mechanisms of regulation. We demonstrate the utility of proteomic profiling for use on a model species with value to ecotoxicology but having limited genomic information.


Journal of Proteome Research | 2009

Comparative interactomics: analysis of arabidopsis 14-3-3 complexes reveals highly conserved 14-3-3 interactions between humans and plants.

Anna-Lisa Paul; Li Liu; Scott McClung; Beth Laughner; Sixue Chen; Robert J. Ferl

As a first step in the broad characterization of plant 14-3-3 multiprotein complexes in vivo, stringent and specific antibody affinity purification was used to capture 14-3-3s together with their interacting proteins from extracts of Arabidopsis cell suspension cultures. Approximately 120 proteins were identified as potential in vivo 14-3-3 interacting proteins by mass spectrometry of the recovered complexes. Comparison of the proteins in this data set with the 14-3-3 interacting proteins from a similar study in human embryonic kidney cell cultures revealed eight interacting proteins that likely represent reasonably abundant, fundamental 14-3-3 interaction complexes that are highly conserved across all eukaryotes. The Arabidopsis 14-3-3 interaction data set was also compared to a yeast in vivo 14-3-3 interaction data set. Four 14-3-3 interacting proteins are conserved in yeast, humans, and Arabidopsis. Comparisons of the data sets based on biochemical function revealed many additional similarities in the human and Arabidopsis data sets that represent conserved functional interactions, while also leaving many proteins uniquely identified in either Arabidopsis or human cells. In particular, the Arabidopsis interaction data set is enriched for proteins involved in metabolism.


Human Molecular Genetics | 2013

Cytosolic proteins lose solubility as amyloid deposits in a transgenic mouse model of Alzheimer-type amyloidosis

Guilian Xu; Stanley M. Stevens; Brenda D. Moore; Scott McClung; David R. Borchelt

The extracellular accumulation of β-amyloid peptide is a key trigger in the pathogenesis of Alzheimers disease (AD). In humans, amyloid deposition precedes the appearance of intracellular inclusion pathology formed by cytosolic proteins such as Tau, α-synuclein and TDP-43. These secondary pathologies have not been observed in mice that model Alzheimer-type amyloidosis by expressing mutant amyloid precursor protein, with or without mutant presenilin 1. The lack of secondary pathology in these models has made it difficult to establish how amyloid deposition initiates the cascade of events that leads to secondary intracellular pathology that characterizes human AD. In transgenic mice that model Alzheimer-type amyloidosis, we sought to determine whether there is evidence of altered cytosolic protein folding by assessing whether amyloid deposition causes normally soluble proteins to misfold. Using a method that involved detergent extraction and sedimentation coupled with proteomic approaches, we identified numerous cytosolic proteins that show specific losses in solubility as amyloid accumulates. The proteins identified included glycolytic enzymes and members of the 14-3-3 chaperone family. A substantial accumulation of lysine 48-linked polyubiquitin was also detected. Overall, the data demonstrate that the accumulation of amyloid by some manner causes the loss of solubility intracellular cytosolic proteins.


Journal of Virological Methods | 2009

Adeno-associated virus capsid serotype identification: analytical methods development and application.

Kim Van Vliet; Yasmin S. Mohiuddin; Scott McClung; Véronique Blouin; Fabienne Rolling; Philippe Moullier; Mavis Agbandje-McKenna; Richard O. Snyder

Mass spectrometry (MS) has been utilized to address the need for a rapid and reliable assay to confirm the capsid serotype identity of recombinant AAV gene transfer vectors. The differences in the primary amino acid sequence of AAV serotypes generate a unique set of fragments with different masses upon proteolytic digestion, and by comparing the fragment masses against common and custom databases, reliable capsid serotype identification is achieved. Highly homologous serotypes, such as AAV1, AAV2, and AAV8, can be distinguished from each other, as well as from less homologous serotypes such as AAV4, and AAV5. Furthermore, analysis of the MS data for wild-type AAV4 compared to an AAV4 capsid with a single amino acid mutation demonstrates the sensitivity of the method and validates the relevance of the method in the context of retinal gene transfer. With an expanding repertoire of AAV serotypes, physicochemical methods for capsid analysis, such as MS, are highly desirable and do not require product-specific analytical reagents such as monoclonal antibodies. A MS-based capsid identity test is suitable for cGMP lot release testing of rAAV gene transfer products and will help ensure patient protection.


PLOS ONE | 2012

Identification of Proteins Sensitive to Thermal Stress in Human Neuroblastoma and Glioma Cell Lines

Guilian Xu; Stanley M. Stevens; Firas Kobiessy; Hilda Brown; Scott McClung; Mark S. Gold; David R. Borchelt

Heat-shock is an acute insult to the mammalian proteome. The sudden elevation in temperature has far-reaching effects on protein metabolism, leads to a rapid inhibition of most protein synthesis, and the induction of protein chaperones. Using heat-shock in cells of neuronal (SH-SY5Y) and glial (CCF-STTG1) lineage, in conjunction with detergent extraction and sedimentation followed by LC-MS/MS proteomic approaches, we sought to identify human proteins that lose solubility upon heat-shock. The two cell lines showed largely overlapping profiles of proteins detected by LC-MS/MS. We identified 58 proteins in detergent insoluble fractions as losing solubility in after heat shock; 10 were common between the 2 cell lines. A subset of the proteins identified by LC-MS/MS was validated by immunoblotting of similarly prepared fractions. Ultimately, we were able to definitively identify 3 proteins as putatively metastable neural proteins; FEN1, CDK1, and TDP-43. We also determined that after heat-shock these cells accumulate insoluble polyubiquitin chains largely linked via lysine 48 (K-48) residues. Collectively, this study identifies human neural proteins that lose solubility upon heat-shock. These proteins may represent components of the human proteome that are vulnerable to misfolding in settings of proteostasis stress.


PLOS ONE | 2015

Enzymatic Characterization of Recombinant Food Vacuole Plasmepsin 4 from the Rodent Malaria Parasite Plasmodium berghei.

Peng Liu; Arthur H. Robbins; Melissa R. Marzahn; Scott McClung; Charles A. Yowell; Stanley M. Stevens; John B. Dame; Ben M. Dunn

The rodent malaria parasite Plasmodium berghei is a practical model organism for experimental studies of human malaria. Plasmepsins are a class of aspartic proteinase isoforms that exert multiple pathological effects in malaria parasites. Plasmepsins residing in the food vacuole (FV) of the parasite hydrolyze hemoglobin in red blood cells. In this study, we cloned PbPM4, the FV plasmepsin gene of P. berghei that encoded an N-terminally truncated pro-segment and the mature enzyme from genomic DNA. We over-expressed this PbPM4 zymogen as inclusion bodies (IB) in Escherichia coli, and purified the protein following in vitro IB refolding. Auto-maturation of the PbPM4 zymogen to mature enzyme was carried out at pH 4.5, 5.0, and 5.5. Interestingly, we found that the PbPM4 zymogen exhibited catalytic activity regardless of the presence of the pro-segment. We determined the optimal catalytic conditions for PbPM4 and studied enzyme kinetics on substrates and inhibitors of aspartic proteinases. Using combinatorial chemistry-based peptide libraries, we studied the active site preferences of PbPM4 at subsites S1, S2, S3, S1’, S2’ and S3’. Based on these results, we designed and synthesized a selective peptidomimetic compound and tested its inhibition of PbPM4, seven FV plasmepsins from human malaria parasites, and human cathepsin D (hcatD). We showed that this compound exhibited a >10-fold selectivity to PbPM4 and human malaria parasite plasmepsin 4 orthologs versus hcatD. Data from this study furthesr our understanding of enzymatic characteristics of the plasmepsin family and provides leads for anti-malarial drug design.


Journal of Neurotrauma | 2005

Rapid Discovery of Putative Protein Biomarkers of Traumatic Brain Injury by SDS–PAGE–Capillary Liquid Chromatography–Tandem Mass Spectrometry

William E. Haskins; Firas Kobeissy; Regina A. Wolper; Andrew K. Ottens; Jason W. Kitlen; Scott McClung; Barbara E. O'Steen; Marjorie M. Chow; Jose A. Pineda; Nancy D. Denslow; Ronald L. Hayes; Kevin K. W. Wang


Biochemistry | 2009

Recombinant Plasmepsin 1 from the Human Malaria Parasite Plasmodium falciparum: Enzymatic Characterization, Active Site Inhibitor Design, and Structural Analysis

Peng Liu; Melissa R. Marzahn; Arthur H. Robbins; Hugo Gutiérrez-de-Terán; David Rodríguez; Scott McClung; Stanley M. Stevens; Charles A. Yowell; John B. Dame; Robert McKenna; Ben M. Dunn


Rapid Communications in Mass Spectrometry | 2005

Enhancement of phosphoprotein analysis using a fluorescent affinity tag and mass spectrometry

Stanley M. Stevens; Alfred Chung; Marjorie C. Chow; Scott McClung; Camille N. Strachan; Alice C. Harmon; Nancy D. Denslow; Laszlo Prokai

Collaboration


Dive into the Scott McClung's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peng Liu

University of Minnesota

View shared research outputs
Researchain Logo
Decentralizing Knowledge