Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Scott S. Verbridge is active.

Publication


Featured researches published by Scott S. Verbridge.


Nature Protocols | 2013

Formation of microvascular networks in vitro

John Morgan; Peter DelNero; Ying Zheng; Scott S. Verbridge; Junmei Chen; Michael Craven; Nakwon Choi; Anthony Diaz-Santana; Pouneh Kermani; Barbara L. Hempstead; José A. López; Thomas N. Corso; Claudia Fischbach; Abraham D Stroock

This protocol describes how to form a 3D cell culture with explicit, endothelialized microvessels. The approach leads to fully enclosed, perfusable vessels in a bioremodelable hydrogel (type I collagen). The protocol uses microfabrication to enable user-defined geometries of the vascular network and microfluidic perfusion to control mass transfer and hemodynamic forces. These microvascular networks (μVNs) allow for multiweek cultures of endothelial cells or cocultures with parenchymal or tissue cells in the extra-lumen space. The platform enables real-time fluorescence imaging of living engineered tissues, in situ confocal fluorescence of fixed cultures and transmission electron microscopy (TEM) imaging of histological sections. This protocol enables studies of basic vascular and blood biology, provides a model for diseases such as tumor angiogenesis or thrombosis and serves as a starting point for constructing prevascularized tissues for regenerative medicine. After one-time microfabrication steps, the system can be assembled in less than 1 d and experiments can run for weeks.


Biomaterials | 2015

3D culture broadly regulates tumor cell hypoxia response and angiogenesis via pro-inflammatory pathways

Peter DelNero; Maureen E. Lane; Scott S. Verbridge; Brian Kwee; Pouneh Kermani; Barbara L. Hempstead; Abraham D. Stroock; Claudia Fischbach

Oxygen status and tissue dimensionality are critical determinants of tumor angiogenesis, a hallmark of cancer and an enduring target for therapeutic intervention. However, it is unclear how these microenvironmental conditions interact to promote neovascularization, due in part to a lack of comprehensive, unbiased data sets describing tumor cell gene expression as a function of oxygen levels within three-dimensional (3D) culture. Here, we utilized alginate-based, oxygen-controlled 3D tumor models to study the interdependence of culture context and the hypoxia response. Microarray gene expression analysis of tumor cells cultured in 2D versus 3D under ambient or hypoxic conditions revealed striking interdependence between culture dimensionality and hypoxia response, which was mediated in part by pro-inflammatory signaling pathways. In particular, interleukin-8 (IL-8) emerged as a major player in the microenvironmental regulation of the hypoxia program. Notably, this interaction between dimensionality and oxygen status via IL-8 increased angiogenic sprouting in a 3D endothelial invasion assay. Taken together, our data suggest that pro-inflammatory pathways are critical regulators of tumor hypoxia response within 3D environments that ultimately impact tumor angiogenesis, potentially providing important therapeutic targets. Furthermore, these results highlight the importance of pathologically relevant tissue culture models to study the complex physical and chemical processes by which the cancer microenvironment mediates new vessel formation.


Cell Adhesion & Migration | 2014

Flow shear stress regulates endothelial barrier function and expression of angiogenic factors in a 3D microfluidic tumor vascular model.

Cara F. Buchanan; Scott S. Verbridge; Pavlos P. Vlachos; Marissa Nichole Rylander

Endothelial cells lining blood vessels are exposed to various hemodynamic forces associated with blood flow. These include fluid shear, the tangential force derived from the friction of blood flowing across the luminal cell surface, tensile stress due to deformation of the vessel wall by transvascular flow, and normal stress caused by the hydrodynamic pressure differential across the vessel wall. While it is well known that these fluid forces induce changes in endothelial morphology, cytoskeletal remodeling, and altered gene expression, the effect of flow on endothelial organization within the context of the tumor microenvironment is largely unknown. Using a previously established microfluidic tumor vascular model, the objective of this study was to investigate the effect of normal (4 dyn/cm2), low (1 dyn/cm2), and high (10 dyn/cm2) microvascular wall shear stress (WSS) on tumor-endothelial paracrine signaling associated with angiogenesis. It is hypothesized that high WSS will alter the endothelial phenotype such that vascular permeability and tumor-expressed angiogenic factors are reduced. Results demonstrate that endothelial permeability decreases as a function of increasing WSS, while co-culture with tumor cells increases permeability relative to mono-cultures. This response is likely due to shear stress-mediated endothelial cell alignment and tumor-VEGF-induced permeability. In addition, gene expression analysis revealed that high WSS (10 dyn/cm2) significantly down-regulates tumor-expressed MMP9, HIF1, VEGFA, ANG1, and ANG2, all of which are important factors implicated in tumor angiogenesis. This result was not observed in tumor mono-cultures or static conditioned media experiments, suggesting a flow-mediated paracrine signaling mechanism exists with surrounding tumor cells that elicits a change in expression of angiogenic factors. Findings from this work have significant implications regarding low blood velocities commonly seen in the tumor vasculature, suggesting high shear stress-regulation of angiogenic activity is lacking in many vessels, thereby driving tumor angiogenesis.


Biomaterials | 2017

Polymer structure-property requirements for stereolithographic 3D printing of soft tissue engineering scaffolds

Ryan J. Mondschein; Akanksha Kanitkar; Christopher B. Williams; Scott S. Verbridge; Timothy E. Long

This review highlights the synthesis, properties, and advanced applications of synthetic and natural polymers 3D printed using stereolithography for soft tissue engineering applications. Soft tissue scaffolds are of great interest due to the number of musculoskeletal, cardiovascular, and connective tissue injuries and replacements humans face each year. Accurately replacing or repairing these tissues is challenging due to the variation in size, shape, and strength of different types of soft tissue. With advancing processing techniques such as stereolithography, control of scaffold resolution down to the μm scale is achievable along with the ability to customize each fabricated scaffold to match the targeted replacement tissue. Matching the advanced manufacturing technique to polymer properties as well as maintaining the proper chemical, biological, and mechanical properties for tissue replacement is extremely challenging. This review discusses the design of polymers with tailored structure, architecture, and functionality for stereolithography, while maintaining chemical, biological, and mechanical properties to mimic a broad range of soft tissue types.


Cancer Letters | 2016

Improving cancer therapies by targeting the physical and chemical hallmarks of the tumor microenvironment

Jill W. Ivey; Mohammad Bonakdar; Akanksha Kanitkar; Rafael V. Davalos; Scott S. Verbridge

Tumors are highly heterogeneous at the patient, tissue, cellular, and molecular levels. This multi-scale heterogeneity poses significant challenges for effective therapies, which ideally must not only distinguish between tumorous and healthy tissue, but also fully address the wide variety of tumorous sub-clones. Commonly used therapies either leverage a biological phenotype of cancer cells (e.g. high rate of proliferation) or indiscriminately kill all the cells present in a targeted volume. Tumor microenvironment (TME) targeting represents a promising therapeutic direction, because a number of TME hallmarks are conserved across different tumor types, despite the underlying genetic heterogeneity. Historically, TME targeting has largely focused on the cells that support tumor growth (e.g. vascular endothelial cells). However, by viewing the intrinsic physical and chemical alterations in the TME as additional therapeutic opportunities rather than barriers, a new class of TME-inspired treatments has great promise to complement or replace existing therapeutic strategies. In this review we summarize the physical and chemical hallmarks of the TME, and discuss how these tumor characteristics either currently are, or may ultimately be targeted to improve cancer therapies.


Journal of Biomedical Materials Research Part A | 2016

Fiber/collagen composites for ligament tissue engineering: influence of elastic moduli of sparse aligned fibers on mesenchymal stem cells

Patrick S. Thayer; Scott S. Verbridge; Linda A. Dahlgren; Sanjeev Kakar; Scott A. Guelcher; Aaron S. Goldstein

Electrospun microfibers are attractive for the engineering of oriented tissues because they present instructive topographic and mechanical cues to cells. However, high-density microfiber networks are too cell-impermeable for most tissue applications. Alternatively, the distribution of sparse microfibers within a three-dimensional hydrogel could present instructive cues to guide cell organization while not inhibiting cell behavior. In this study, thin (∼5 fibers thick) layers of aligned microfibers (0.7 μm) were embedded within collagen hydrogels containing mesenchymal stem cells (MSCs), cultured for up to 14 days, and assayed for expression of ligament markers and imaged for cell organization. These microfibers were generated through the electrospinning of polycaprolactone (PCL), poly(ester-urethane) (PEUR), or a 75/25 PEUR/PCL blend to produce microfiber networks with elastic moduli of 31, 15, and 5.6 MPa, respectively. MSCs in composites containing 5.6 MPa fibers exhibited increased expression of the ligament marker scleraxis and the contractile phenotype marker α-smooth muscle actin versus the stiffer fiber composites. Additionally, cells within the 5.6 MPa microfiber composites were more oriented compared to cells within the 15 and 31 MPa microfiber composites. Together, these data indicate that the mechanical properties of microfiber/collagen composites can be tuned for the engineering of ligament and other target tissues.


Biophysical Journal | 2017

Enhancing Irreversible Electroporation by Manipulating Cellular Biophysics with a Molecular Adjuvant

Jill W. Ivey; Eduardo L. Latouche; Megan L. Richards; Glenn J. Lesser; Waldemar Debinski; Rafael V. Davalos; Scott S. Verbridge

Pulsed electric fields applied to cells have been used as an invaluable research tool to enhance delivery of genes or other intracellular cargo, as well as for tumor treatment via electrochemotherapy or tissue ablation. These processes involve the buildup of charge across the cell membrane, with subsequent alteration of transmembrane potential that is a function of cell biophysics and geometry. For traditional electroporation parameters, larger cells experience a greater degree of membrane potential alteration. However, we have recently demonstrated that the nuclear/cytoplasm ratio (NCR), rather than cell size, is a key predictor of response for cells treated with high-frequency irreversible electroporation (IRE). In this study, we leverage a targeted molecular therapy, ephrinA1, known to markedly collapse the cytoplasm of cells expressing the EphA2 receptor, to investigate how biophysical cellular changes resulting from NCR manipulation affect the response to IRE at varying frequencies. We present evidence that the increase in the NCR mitigates the cell death response to conventional electroporation pulsed-electric fields (∼100 μs), consistent with the previously noted size dependence. However, this same molecular treatment enhanced the cell death response to high-frequency electric fields (∼1 μs). This finding demonstrates the importance of considering cellular biophysics and frequency-dependent effects in developing electroporation protocols, and our approach provides, to our knowledge, a novel and direct experimental methodology to quantify the relationship between cell morphology, pulse frequency, and electroporation response. Finally, this novel, to our knowledge, combinatorial approach may provide a paradigm to enhance inxa0vivo tumor ablation through a molecular manipulation of cellular morphology before IRE application.


Bioelectrochemistry | 2017

Irreversible electroporation inhibits pro-cancer inflammatory signaling in triple negative breast cancer cells.

Ishan Goswami; Sheryl Coutermarsh-Ott; Ryan Morrison; Irving C. Allen; Rafael V. Davalos; Scott S. Verbridge; Lissett R. Bickford

Low-level electric fields have been demonstrated to induce spatial re-distribution of cell membrane receptors when applied for minutes or hours. However, there is limited literature on the influence on cell signaling with short transient high-amplitude pulses typically used in irreversible electroporation (IRE) for cancer treatment. Moreover, literature on signaling pertaining to immune cell trafficking after IRE is conflicting. We hypothesized that pulse parameters (field strength and exposure time) influence cell signaling and subsequently impact immune-cell trafficking. This hypothesis was tested in-vitro on triple negative breast cancer cells treated with IRE, where the effects of pulse parameters on key cell signaling factors were investigated. Importantly, real time PCR mRNA measurements and ELISA protein analyses revealed that thymic stromal lymphopoietin (TSLP) signaling was down regulated by electric field strengths above a critical threshold, irrespective of exposure times spanning those typically used clinically. Comparison with other treatments (thermal shock, chemical poration, kinase inhibitors) revealed that IRE has a unique effect on TSLP. Because TSLP signaling has been demonstrated to drive pro-cancerous immune cell phenotypes in breast and pancreatic cancers, our finding motivates further investigation into the potential use of IRE for induction of an anti-tumor immune response in vivo.


Annals of Biomedical Engineering | 2017

The Feasibility of Enhancing Susceptibility of Glioblastoma Cells to IRE Using a Calcium Adjuvant

Elisa M. Wasson; Jill W. Ivey; Scott S. Verbridge; Rafael V. Davalos

Irreversible electroporation (IRE) is a cellular ablation method used to treat a variety of cancers. IRE works by exposing tissues to pulsed electric fields which cause cell membrane disruption. Cells exposed to lower energies become temporarily permeable while greater energy exposure results in cell death. For IRE to be used safely in the brain, methods are needed to extend the area of ablation without increasing applied voltage, and thus, thermal damage. We present evidence that IRE used with adjuvant calcium (5xa0mM CaCl2) results in a nearly twofold increase in ablation area in vitro compared to IRE alone. Adjuvant 5xa0mM CaCl2 induces death in cells reversibly electroporated by IRE, thereby lowering the electric field thresholds required for cell death to nearly half that of IRE alone. The calcium-induced death response of reversibly electroporated cells is confirmed by electrochemotherapy pulses which also induced cell death with calcium but not without. These findings, combined with our numerical modeling, suggest the ability to ablate up to 3.2× larger volumes of tissue in vivo when combining IRE and calcium. The ability to ablate a larger volume with lowered energies would improve the efficacy and safety of IRE therapy.


Journal of Biomedical Materials Research Part A | 2015

Bio‐inspired microstructures in collagen type I hydrogel

Yahya Hosseini; Scott S. Verbridge; Masoud Agah

This article presents a novel technique to fabricate complex type I collagen hydrogel structures, with varying depth and width defined by a single fabrication step. This technique takes advantage of reactive ion etching lag to fabricate three-dimensional (3-D) structures in silicon. Then, a polydimethylsiloxane replica was fabricated utilizing soft lithography and used as a stamp on collagen hydrogel to transfer these patterns. Endothelial cells were seeded on the hydrogel devices to measure their interaction with these more physiologically relevant cell culture surfaces. Confocal imaging was utilized to image the hydrogel devices to demonstrate the robustness of the fabrication technique, and to study the cell-extracellular matrix interaction after cell seeding. In this study, we observed that endothelial cells remodeled the sharp scallops of collagen hydrogel structures and compressed the structures with low degree of slope. Such patterning techniques will enhance the physiological relevance of existing 3-D cell culture platforms by providing a technical bridge between the high resolution yet planar techniques of standard lithography with more complex yet low resolution 3-D printing methods.

Collaboration


Dive into the Scott S. Verbridge's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ge Wang

Rensselaer Polytechnic Institute

View shared research outputs
Top Co-Authors

Avatar

Hengyong Yu

University of Massachusetts Lowell

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge