Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Scott T. Acton is active.

Publication


Featured researches published by Scott T. Acton.


IEEE Transactions on Image Processing | 2002

Speckle reducing anisotropic diffusion

Yongjian Yu; Scott T. Acton

This paper provides the derivation of speckle reducing anisotropic diffusion (SRAD), a diffusion method tailored to ultrasonic and radar imaging applications. SRAD is the edge-sensitive diffusion for speckled images, in the same way that conventional anisotropic diffusion is the edge-sensitive diffusion for images corrupted with additive noise. We first show that the Lee and Frost filters can be cast as partial differential equations, and then we derive SRAD by allowing edge-sensitive anisotropic diffusion within this context. Just as the Lee and Frost filters utilize the coefficient of variation in adaptive filtering, SRAD exploits the instantaneous coefficient of variation, which is shown to be a function of the local gradient magnitude and Laplacian operators. We validate the new algorithm using both synthetic and real linear scan ultrasonic imagery of the carotid artery. We also demonstrate the algorithm performance with real SAR data. The performance measures obtained by means of computer simulation of carotid artery images are compared with three existing speckle reduction schemes. In the presence of speckle noise, speckle reducing anisotropic diffusion excels over the traditional speckle removal filters and over the conventional anisotropic diffusion method in terms of mean preservation, variance reduction, and edge localization.


IEEE Transactions on Image Processing | 2007

Active Contour External Force Using Vector Field Convolution for Image Segmentation

Bing Li; Scott T. Acton

Snakes, or active contours, have been widely used in image processing applications. Typical roadblocks to consistent performance include limited capture range, noise sensitivity, and poor convergence to concavities. This paper proposes a new external force for active contours, called vector field convolution (VFC), to address these problems. VFC is calculated by convolving the edge map generated from the image with the user-defined vector field kernel. We propose two structures for the magnitude function of the vector field kernel, and we provide an analytical method to estimate the parameter of the magnitude function. Mixed VFC is introduced to alleviate the possible leakage problem caused by choosing inappropriate parameters. We also demonstrate that the standard external force and the gradient vector flow (GVF) external force are special cases of VFC in certain scenarios. Examples and comparisons with GVF are presented in this paper to show the advantages of this innovation, including superior noise robustness, reduced computational cost, and the flexibility of tailoring the force field.


IEEE Signal Processing Letters | 2003

Image enhancement using a contrast measure in the compressed domain

Jinshan Tang; Eli Peli; Scott T. Acton

An image enhancement algorithm for images compressed using the JPEG standard is presented. The algorithm is based on a contrast measure defined within the discrete cosine transform (DCT) domain. The advantages of the psychophysically motivated algorithm are 1) the algorithm does not affect the compressibility of the original image because it enhances the images in the decompression stage and 2) the approach is characterized by low computational complexity. The proposed algorithm is applicable to any DCT-based image compression standard, such as JPEG, MPEG 2, and H. 261.


IEEE Transactions on Medical Imaging | 2002

Tracking leukocytes in vivo with shape and size constrained active contours

Scott T. Acton; K. Ley

Inflammatory disease is initiated by leukocytes (white blood cells) rolling along the inner surface lining of small blood vessels called postcapillary venules. Studying the number and velocity of rolling leukocytes is essential to understanding and successfully treating inflammatory diseases. Potential inhibitors of leukocyte recruitment can be screened by leukocyte rolling assays and successful inhibitors validated by intravital microscopy. In this paper, we present an active contour or snake-based technique to automatically track the movement of the leukocytes. The novelty of the proposed method lies in the energy functional that constrains the shape and size of the active contour. This paper introduces a significant enhancement over existing gradient-based snakes in the form of a modified gradient vector flow. Using the gradient vector flow, we can track leukocytes rolling at high speeds that are not amenable to tracking with the existing edge-based techniques. We also propose a new energy-based implicit sampling method of the points on the active contour that replaces the computationally expensive explicit method. To enhance the performance of this shape and size constrained snake model, we have coupled it with Kalman filter so that during coasting (when the leukocytes are completely occluded or obscured), the tracker may infer the location of the center of the leukocyte. Finally, we have compared the performance of the proposed snake tracker with that of the correlation and centroid-based trackers. The proposed snake tracker results in superior performance measures, such as reduced error in locating the leukocyte under tracking and improvements in the percentage of frames successfully tracked. For screening and drug validation, the tracker shows promise as an automated data collection tool.


IEEE Transactions on Medical Imaging | 2004

Motion gradient vector flow: an external force for tracking rolling leukocytes with shape and size constrained active contours

Scott T. Acton

Recording rolling leukocyte velocities from intravital microscopic video imagery is a critical task in inflammation research and drug validation. Since manual tracking is excessively time consuming, an automated method is desired. This paper illustrates an active contour based automated tracking method, where we propose a novel external force to guide the active contour that takes the hemodynamic flow direction into account. The construction of the proposed force field, referred to as motion gradient vector flow (MGVF), is accomplished by minimizing an energy functional involving the motion direction, and the image gradient magnitude. The tracking experiments demonstrate that MGVF can be used to track both slow- and fast-rolling leukocytes, thus extending the capture range of previously designed cell tracking techniques.


IEEE Transactions on Image Processing | 1998

Multigrid anisotropic diffusion

Scott T. Acton

A multigrid anisotropic diffusion algorithm for image processing is presented. The multigrid implementation provides an efficient hierarchical relaxation method that facilitates the application of anisotropic diffusion to time-critical processes. Through a multigrid V-cycle, the anisotropic diffusion equations are successively transferred to coarser grids and used in a coarse-to-fine error correction scheme. When a coarse grid with a trivial solution is reached, the coarse grid estimates of the residual error can be propagated to the original grid and used to refine the solution. The main benefits of the multigrid approach are rapid intraregion smoothing and reduction of artifacts due to the elimination of low-frequency error. The theory of multigrid anisotropic diffusion is developed. Then, the intergrid transfer functions, relaxation techniques, diffusion coefficients, and boundary conditions are discussed. The analysis includes the examination of the storage requirements, the computational cost, and the solution quality. Finally, experimental results are reported that demonstrate the effectiveness of the multigrid approach.


Journal of Clinical Investigation | 2012

Dynamic T cell–APC interactions sustain chronic inflammation in atherosclerosis

Ekaterina K. Koltsova; Zacarias Garcia; Grzegorz Chodaczek; Michael J. Landau; Sara McArdle; Spencer Scott; Sibylle von Vietinghoff; Elena Galkina; Yury I. Miller; Scott T. Acton; Klaus Ley

Atherosclerosis is a chronic inflammatory disease of large and medium-sized arteries characterized by leukocyte accumulation in the vessel wall. Both innate and adaptive immune responses contribute to atherogenesis, but the identity of atherosclerosis-relevant antigens and the role of antigen presentation in this disease remain poorly characterized. We developed live-cell imaging of explanted aortas to compare the behavior and role of APCs in normal and atherosclerotic mice. We found that CD4+ T cells were capable of interacting with fluorescently labeled (CD11c-YFP+) APCs in the aortic wall in the presence, but not the absence, of cognate antigen. In atherosclerosis-prone Apoe-/-CD11c-YFP+ mice, APCs extensively interacted with CD4+ T cells in the aorta, leading to cell activation and proliferation as well as secretion of IFN-γ and TNF-α. These cytokines enhanced uptake of oxidized and minimally modified LDL by macrophages. We conclude that antigen presentation by APCs to CD4+ T cells in the arterial wall causes local T cell activation and production of proinflammatory cytokines, which promote atherosclerosis by maintaining chronic inflammation and inducing foam cell formation.


IEEE Transactions on Medical Imaging | 2003

Merging parametric active contours within homogeneous image regions for MRI-based lung segmentation

Scott T. Acton; Talissa A. Altes; E.E. de Lange; James R. Brookeman

Inhaled hyperpolarized helium-3 (/sup 3/He) gas is a new magnetic resonance (MR) contrast agent that is being used to study lung functionality. To evaluate the total lung ventilation from the hyperpolarized /sup 3/He MR images, it is necessary to segment the lung cavities. This is difficult to accomplish using only the hyperpolarized /sup 3/He MR images, so traditional proton (/sup 1/H) MR images are frequently obtained concurrent with the hyperpolarized /sup 3/He MR examination. Segmentation of the lung cavities from traditional proton (/sup 1/H) MRI is a necessary first step in the analysis of hyperpolarized /sup 3/He MR images. In this paper, we develop an active contour model that provides a smooth boundary and accurately captures the high curvature features of the lung cavities from the /sup 1/H MR images. This segmentation method is the first parametric active contour model that facilitates straightforward merging of multiple contours. The proposed method of merging computes an external force field that is based on the solution of partial differential equations with boundary condition defined by the initial positions of the evolving contours. A theoretical connection with fluid flow in porous media and the proposed force field is established. Then by using the properties of fluid flow we prove that the proposed method indeed achieves merging and the contours stop at the object boundary as well. Experimental results involving merging in synthetic images are provided. The segmentation technique has been employed in lung /sup 1/H MR imaging for segmenting the total lung air space. This technology plays a key role in computing the functional air space from MR images that use hyperpolarized /sup 3/He gas as a contrast agent.


IEEE Transactions on Image Processing | 2004

Edge detection in ultrasound imagery using the instantaneous coefficient of variation

Yongjian Yu; Scott T. Acton

The instantaneous coefficient of variation (ICOV) edge detector, based on normalized gradient and Laplacian operators, has been proposed for edge detection in ultrasound images. In this paper, the edge detection and localization performance of the ICOV-squared (ICOVS) detector are examined. First, a simplified version of the ICOVS detector, the normalized gradient magnitude squared, is scrutinized in order to reveal the statistical performance of edge detection and localization in speckled ultrasound imagery. Both the probability of detection and the probability of false alarm are evaluated for the detector. Edge localization is characterized by the position of the peak and the 3-dB width of the detector response. Then, the speckle-edge response of the ICOVS as applied to a realistic edge model is studied. Through theoretical analysis, we reveal the compensatory effects of the normalized Laplacian operator in the ICOV edge detector for edge-localization error. An ICOV-based edge-detection algorithm is implemented in which the ICOV detector is embedded in a diffusion coefficient in an anisotropic diffusion process. Experiments with real ultrasound images have shown that the proposed algorithm is effective in extracting edges in the presence of speckle. Quantitatively, the ICOVS provides a lower localization error, and qualitatively, a dramatic improvement in edge-detection performance over an existing edge-detection method for speckled imagery.


IEEE Transactions on Image Processing | 2000

Scale space classification using area morphology

Scott T. Acton; Dipti Prasad Mukherjee

We explore the application of area morphology to image classification. From the input image, a scale space is created by successive application of an area morphology operator. The pixels within the scale space corresponding to the same image location form a scale space vector. A scale space vector therefore contains the intensity of a particular pixel for a given set of scales, determined in this approach by image granulometry. Using the standard k-means algorithm or the fuzzy c-means algorithm, the image pixels can be classified by clustering the associated scale space vectors. The scale space classifier presented here is rooted in the novel area open-close and area close-open scale spaces. Unlike other scale generating filters, the area operators affect the image by removing connected components within the image level sets that do not satisfy the minimum area criterion. To show that the area open-close and area close-open scale spaces provide an effective multiscale structure for image classification, we demonstrate the fidelity, causality, and edge localization properties for the scale spaces. The analysis also reveals that the area open-close and area close-open scale spaces improve classification by clustering members of similar objects more effectively than the fixed scale classifier. Experimental results are provided that demonstrate the reduction in intra-region classification error and in overall classification error given by the scale space classifier for classification applications where object scale is important. In both visual and objective comparisons, the scale space approach outperforms the traditional fixed scale clustering algorithms and the parametric Bayesian classifier for classification tasks that depend on object scale.

Collaboration


Dive into the Scott T. Acton's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jinshan Tang

Michigan Technological University

View shared research outputs
Top Co-Authors

Avatar

Klaus Ley

La Jolla Institute for Allergy and Immunology

View shared research outputs
Top Co-Authors

Avatar

Alan C. Bovik

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bing Li

University of Virginia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Saurav Basu

Carnegie Mellon University

View shared research outputs
Researchain Logo
Decentralizing Knowledge