Scott T. Baker
University of Minnesota
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Scott T. Baker.
The Journal of Neuroscience | 2012
Brock Grill; Lizhen Chen; Erik D. Tulgren; Scott T. Baker; Willy V. Bienvenut; Matthew P. Anderson; Manfredo Quadroni; Yishi Jin; Craig C. Garner
Previous studies in Caenorhabditis elegans showed that RPM-1 (Regulator of Presynaptic Morphology-1) regulates axon termination and synapse formation. To understand the mechanism of how rpm-1 functions, we have used mass spectrometry to identify RPM-1 binding proteins, and have identified RAE-1 (RNA Export protein-1) as an evolutionarily conserved binding partner. We define a RAE-1 binding region in RPM-1, and show that this binding interaction is conserved and also occurs between Rae1 and the human ortholog of RPM-1 called Pam (protein associated with Myc). rae-1 loss of function causes similar axon and synapse defects, and synergizes genetically with two other RPM-1 binding proteins, GLO-4 and FSN-1. Further, we show that RAE-1 colocalizes with RPM-1 in neurons, and that rae-1 functions downstream of rpm-1. These studies establish a novel postmitotic function for rae-1 in neuronal development.
PLOS Genetics | 2014
Scott T. Baker; Karla J. Opperman; Erik D. Tulgren; Shane M. Turgeon; Willy V. Bienvenut; Brock Grill
The Pam/Highwire/RPM-1 (PHR) proteins are key regulators of neuronal development that function in axon extension and guidance, termination of axon outgrowth, and synapse formation. Outside of development, the PHR proteins also regulate axon regeneration and Wallerian degeneration. The PHR proteins function in part by acting as ubiquitin ligases that degrade the Dual Leucine zipper-bearing Kinase (DLK). Here, we show that the Caenorhabditis elegans PHR protein, Regulator of Presynaptic Morphology 1 (RPM-1), also utilizes a phosphatase-based mechanism to regulate DLK-1. Using mass spectrometry, we identified Protein Phosphatase Magnesium/Manganese dependent 2 (PPM-2) as a novel RPM-1 binding protein. Genetic, transgenic, and biochemical studies indicated that PPM-2 functions coordinately with the ubiquitin ligase activity of RPM-1 and the F-box protein FSN-1 to negatively regulate DLK-1. PPM-2 acts on S874 of DLK-1, a residue implicated in regulation of DLK-1 binding to a short, inhibitory isoform of DLK-1 (DLK-1S). Our study demonstrates that PHR proteins function through both phosphatase and ubiquitin ligase mechanisms to inhibit DLK. Thus, PHR proteins are potentially more accurate and sensitive regulators of DLK than originally thought. Our results also highlight an important and expanding role for the PP2C phosphatase family in neuronal development.
Genetics | 2011
Erik D. Tulgren; Scott T. Baker; Laramie Rapp; Allison Gurney; Brock Grill
The PHR (Pam/Highwire/RPM-1) proteins are evolutionarily conserved ubiquitin ligases that regulate axon guidance and synapse formation in Caenorhabditis elegans, Drosophila, zebrafish, and mice. In C. elegans, RPM-1 (Regulator of Presynaptic Morphology-1) functions in synapse formation, axon guidance, axon termination, and postsynaptic GLR-1 trafficking. Acting as an E3 ubiquitin ligase, RPM-1 negatively regulates a MAP kinase pathway that includes: dlk-1, mkk-4, and the p38 MAPK, pmk-3. Here we provide evidence that ppm-1, a serine/threonine phosphatase homologous to human PP2Cα(PPM1A) and PP2Cβ(PPM1B) acts as a second negative regulatory mechanism to control the dlk-1 pathway. We show that ppm-1 functions through its phosphatase activity in a parallel genetic pathway with glo-4 and fsn-1 to regulate both synapse formation in the GABAergic motorneurons and axon termination in the mechanosensory neurons. Our transgenic analysis shows that ppm-1 acts downstream of rpm-1 to negatively regulate the DLK-1 pathway, with PPM-1 most likely acting at the level of pmk-3. Our study provides insight into the negative regulatory mechanisms that control the dlk-1 pathway in neurons and demonstrates a new role for the PP2C/PPM phosphatases as regulators of neuronal development.
Genetics | 2015
Scott T. Baker; Shane M. Turgeon; Erik D. Tulgren; Jeanne Wigant; Omeed Rahimi; Karla J. Opperman; Brock Grill
We show that loss-of-function mutations in kinases of the MLK-1 pathway (mlk-1, mek-1, and kgb-1/jnk) function cell-autonomously in neurons to suppress defects in synapse formation and axon termination caused by rpm-1 loss of function. Our genetic analysis also suggests that the phosphatase PPM-1, like RPM-1, is a potential inhibitor of kinases in the MLK-1 pathway.
Journal of Biological Chemistry | 2014
Jaiprakash Sharma; Scott T. Baker; Shane M. Turgeon; Allison Gurney; Karla J. Opperman; Brock Grill
Background: How RPM-1 interacts with FSN-1 remains unknown. Results: Structure-function and transgenic analysis define the biochemical relationship between RPM-1 and FSN-1. Conclusion: RPM-1 uses a conserved mechanism to bind FSN-1 that is independent of RPM-1 ubiquitin ligase activity. Significance: Our biochemical and genetic analysis has led to identification of RIP, an in vivo inhibitor of the RPM-1·FSN-1 ubiquitin ligase complex. The Pam/Highwire/RPM-1 (PHR) proteins include: Caenorhabditis elegans RPM-1 (Regulator of Presynaptic Morphology 1), Drosophila Highwire, and murine Phr1. These important regulators of neuronal development function in synapse formation, axon guidance, and axon termination. In mature neurons the PHR proteins also regulate axon degeneration and regeneration. PHR proteins function, in part, through an ubiquitin ligase complex that includes the F-box protein FSN-1 in C. elegans and Fbxo45 in mammals. At present, the structure-function relationships that govern formation of this complex are poorly understood. We cloned 9 individual domains that compose the entire RPM-1 protein sequence and found a single domain centrally located in RPM-1 that is sufficient for binding to FSN-1. Deletion analysis further refined FSN-1 binding to a conserved 97-amino acid region of RPM-1. Mutagenesis identified several conserved motifs and individual amino acids that mediate this interaction. Transgenic overexpression of this recombinant peptide, which we refer to as the RPM-1·FSN-1 complex inhibitory peptide (RIP), yields similar phenotypes and enhancer effects to loss of function in fsn-1. Defects caused by transgenic RIP were suppressed by loss of function in the dlk-1 MAP3K and were alleviated by point mutations that reduce binding to FSN-1. These findings suggest that RIP specifically inhibits the interaction between RPM-1 and FSN-1 in vivo, thereby blocking formation of a functional ubiquitin ligase complex. Our results are consistent with the FSN-1 binding domain of RPM-1 recruiting FSN-1 and a target protein, such as DLK-1, whereas the RING-H2 domain of RPM-1 ubiquitinates the target.
Journal of Biological Chemistry | 2017
Scott T. Baker; Brock Grill
The intracellular signaling protein regulator of presynaptic morphology 1 (RPM-1) is a conserved regulator of synapse formation and axon termination in Caenorhabditis elegans. RPM-1 functions in a ubiquitin ligase complex with the F-box protein FSN-1 and functions through the microtubule binding protein RAE-1. Using a structure-function approach and positive selection for transgenic C. elegans, we explored the biochemical relationship between RPM-1, FSN-1, and RAE-1. This led to the identification of two new domains in RPM-1 that are sufficient for binding to FSN-1, called FSN-1 binding domain 2 (FBD2) and FBD3. Furthermore, we map the RAE-1 binding domain to a much smaller region of RPM-1. Point mutations in RPM-1 that reduce binding to RAE-1 did not affect FSN-1 binding, indicating that RPM-1 utilizes different biochemical mechanisms to bind these molecules. Analysis of RPM-1 protein complexes in the neurons of C. elegans elucidated two further discoveries: FSN-1 binds to RAE-1, and this interaction is not mediated by RPM-1, and RPM-1 binding to FSN-1 and RAE-1 reduces FSN-1·RAE-1 complex formation. These results indicate that RPM-1 uses different mechanisms to recruit FSN-1 and RAE-1 into independent signaling complexes in neurons.
Pediatric Dentistry | 2007
Soraya Beiraghi; Sandra L. Myers; Warren E. Regelmann; Scott T. Baker
Journal of Biological Chemistry | 2018
Muriel Desbois; Oliver Crawley; Paul R. Evans; Scott T. Baker; Ikuo Masuho; Ryohei Yasuda; Brock Grill
Archive | 2015
Scott T. Baker; Shane M. Turgeon; Erik D. Tulgren; Jeanne Wigant; Omeed Rahimi; Karla J. Opperman; Brock Grill
Journal of Clinical Densitometry | 2015
Anna Petryk; Lynda E. Polgreen; Scott T. Baker; John E. Wagner; Julia Steinberger; Margaret L. MacMillan