Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Scott T. Tagawa is active.

Publication


Featured researches published by Scott T. Tagawa.


Cell | 2015

Integrative clinical genomics of advanced prostate cancer

Dan R. Robinson; Eliezer M. Van Allen; Yi Mi Wu; Nikolaus Schultz; Robert J. Lonigro; Juan Miguel Mosquera; Bruce Montgomery; Mary-Ellen Taplin; Colin C. Pritchard; Gerhardt Attard; Himisha Beltran; Wassim Abida; Robert K. Bradley; Jake Vinson; Xuhong Cao; Pankaj Vats; Lakshmi P. Kunju; Maha Hussain; Felix Y. Feng; Scott A. Tomlins; Kathleen A. Cooney; David C. Smith; Christine Brennan; Javed Siddiqui; Rohit Mehra; Yu Chen; Dana E. Rathkopf; Michael J. Morris; Stephen B. Solomon; Jeremy C. Durack

Toward development of a precision medicine framework for metastatic, castration-resistant prostate cancer (mCRPC), we established a multi-institutional clinical sequencing infrastructure to conduct prospective whole-exome and transcriptome sequencing of bone or soft tissue tumor biopsies from a cohort of 150 mCRPC affected individuals. Aberrations of AR, ETS genes, TP53, and PTEN were frequent (40%-60% of cases), with TP53 and AR alterations enriched in mCRPC compared to primary prostate cancer. We identified new genomic alterations in PIK3CA/B, R-spondin, BRAF/RAF1, APC, β-catenin, and ZBTB16/PLZF. Moreover, aberrations of BRCA2, BRCA1, and ATM were observed at substantially higher frequencies (19.3% overall) compared to those in primary prostate cancers. 89% of affected individuals harbored a clinically actionable aberration, including 62.7% with aberrations in AR, 65% in other cancer-related genes, and 8% with actionable pathogenic germline alterations. This cohort study provides clinically actionable information that could impact treatment decisions for these affected individuals.


Cancer Discovery | 2011

Molecular Characterization of Neuroendocrine Prostate Cancer and Identification of New Drug Targets

Himisha Beltran; David S. Rickman; Kyung Park; Sung Suk Chae; Andrea Sboner; Theresa Y. MacDonald; Yuwei Wang; Karen Sheikh; Stéphane Terry; Scott T. Tagawa; Rajiv Dhir; Joel B. Nelson; Alexandre de la Taille; Yves Allory; Mark Gerstein; Sven Perner; Kenneth J. Pienta; Arul M. Chinnaiyan; Yuzhuo Wang; Colin Collins; Martin Gleave; Francesca Demichelis; David M. Nanus; Mark A. Rubin

UNLABELLED Neuroendocrine prostate cancer (NEPC) is an aggressive subtype of prostate cancer that most commonly evolves from preexisting prostate adenocarcinoma (PCA). Using Next Generation RNA-sequencing and oligonucleotide arrays, we profiled 7 NEPC, 30 PCA, and 5 benign prostate tissue (BEN), and validated findings on tumors from a large cohort of patients (37 NEPC, 169 PCA, 22 BEN) using IHC and FISH. We discovered significant overexpression and gene amplification of AURKA and MYCN in 40% of NEPC and 5% of PCA, respectively, and evidence that that they cooperate to induce a neuroendocrine phenotype in prostate cells. There was dramatic and enhanced sensitivity of NEPC (and MYCN overexpressing PCA) to Aurora kinase inhibitor therapy both in vitro and in vivo, with complete suppression of neuroendocrine marker expression following treatment. We propose that alterations in Aurora kinase A and N-myc are involved in the development of NEPC, and future clinical trials will help determine from the efficacy of Aurora kinase inhibitor therapy. SIGNIFICANCE We report on the largest in-depth molecular analysis of NEPC and provide new insight into molecular events involved in the progression of prostate cancer.


Cancer Research | 2011

Taxane-Induced Blockade to Nuclear Accumulation of the Androgen Receptor Predicts Clinical Responses in Metastatic Prostate Cancer

Medha S Darshan; Matthew Loftus; Maria Thadani-Mulero; Ben P Levy; Daniel Escuin; Xi Kathy Zhou; Ada Gjyrezi; Chantal Chanel-Vos; Ruoqian Shen; Scott T. Tagawa; Neil H. Bander; David M. Nanus; Paraskevi Giannakakou

Prostate cancer progression requires active androgen receptor (AR) signaling which occurs following translocation of AR from the cytoplasm to the nucleus. Chemotherapy with taxanes improves survival in patients with castrate resistant prostate cancer (CRPC). Taxanes induce microtubule stabilization, mitotic arrest, and apoptotic cell death, but recent data suggest that taxanes can also affect AR signaling. Here, we report that taxanes inhibit ligand-induced AR nuclear translocation and downstream transcriptional activation of AR target genes such as prostate-specific antigen. AR nuclear translocation was not inhibited in cells with acquired β-tubulin mutations that prevent taxane-induced microtubule stabilization, confirming a role for microtubules in AR trafficking. Upon ligand activation, AR associated with the minus-end-microtubule motor dynein, thereby trafficking on microtubules to translocate to the nucleus. Analysis of circulating tumor cells (CTC) isolated from the peripheral blood of CRPC patients receiving taxane chemotherapy revealed a significant correlation between AR cytoplasmic sequestration and clinical response to therapy. These results indicate that taxanes act in CRPC patients at least in part by inhibiting AR nuclear transport and signaling. Further, they suggest that monitoring AR subcellular localization in the CTCs of CRPC patients might predict clinical responses to taxane chemotherapy.


Lab on a Chip | 2010

Capture of circulating tumor cells from whole blood of prostate cancer patients using geometrically enhanced differential immunocapture (GEDI) and a prostate-specific antibody.

Jason P. Gleghorn; Erica D. Pratt; Denise Denning; He Liu; Neil H. Bander; Scott T. Tagawa; David M. Nanus; Paraskevi Giannakakou; Brian J. Kirby

Geometrically enhanced differential immunocapture (GEDI) and an antibody for prostate-specific membrane antigen (PSMA) are used for high-efficiency and high-purity capture of prostate circulating tumor cells from peripheral whole blood samples of castrate-resistant prostate cancer patients.


European Urology | 2013

Targeted Next-generation Sequencing of Advanced Prostate Cancer Identifies Potential Therapeutic Targets and Disease Heterogeneity

Himisha Beltran; Roman Yelensky; Garrett Michael Frampton; Kyung Park; Sean Downing; Theresa Y. MacDonald; Mirna Jarosz; Doron Lipson; Scott T. Tagawa; David M. Nanus; Philip J. Stephens; Juan Miguel Mosquera; Maureen T. Cronin; Mark A. Rubin

BACKGROUND Most personalized cancer care strategies involving DNA sequencing are highly reliant on acquiring sufficient fresh or frozen tissue. It has been challenging to comprehensively evaluate the genome of advanced prostate cancer (PCa) because of limited access to metastatic tissue. OBJECTIVE To demonstrate the feasibility of a novel next-generation sequencing (NGS)-based platform that can be used with archival formalin-fixed paraffin-embedded (FFPE) biopsy tissue to evaluate the spectrum of DNA alterations seen in advanced PCa. DESIGN, SETTING, AND PARTICIPANTS FFPE samples (including archival prostatectomies and prostate needle biopsies) were obtained from 45 patients representing the spectrum of disease: localized PCa, metastatic hormone-naive PCa, and metastatic castration-resistant PCa (CRPC). We also assessed paired primaries and metastases to understand disease heterogeneity and disease progression. INTERVENTION At least 50 ng of tumor DNA was extracted from FFPE samples and used for hybridization capture and NGS using the Illumina HiSeq 2000 platform. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS A total of 3320 exons of 182 cancer-associated genes and 37 introns of 14 commonly rearranged genes were evaluated for genomic alterations. RESULTS AND LIMITATIONS We obtained an average sequencing depth of >900X. Overall, 44% of CRPCs harbored genomic alterations involving the androgen receptor gene (AR), including AR copy number gain (24% of CRPCs) or AR point mutation (20% of CRPCs). Other recurrent mutations included transmembrane protease, serine 2 gene (TMPRSS2):v-ets erythroblastosis virus E26 oncogene homolog (avian) gene (ERG) fusion (44%); phosphatase and tensin homolog gene (PTEN) loss (44%); tumor protein p53 gene (TP53) mutation (40%); retinoblastoma gene (RB) loss (28%); v-myc myelocytomatosis viral oncogene homolog (avian) gene (MYC) gain (12%); and phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit α gene (PIK3CA) mutation (4%). There was a high incidence of genomic alterations involving key genes important for DNA repair, including breast cancer 2, early onset gene (BRCA2) loss (12%) and ataxia telangiectasia mutated gene (ATM) mutations (8%); these alterations are potentially targetable with poly(adenosine diphosphate-ribose)polymerase inhibitors. A novel and actionable rearrangement involving the v-raf murine sarcoma viral oncogene homolog B1 gene (BRAF) was also detected. CONCLUSIONS This first-in-principle study demonstrates the feasibility of performing in-depth DNA analyses using FFPE tissue and brings new insight toward understanding the genomic landscape within advanced PCa.


Clinical Cancer Research | 2013

Phase II Study of Lutetium-177–Labeled Anti-Prostate-Specific Membrane Antigen Monoclonal Antibody J591 for Metastatic Castration-Resistant Prostate Cancer

Scott T. Tagawa; Matthew I. Milowsky; Michael J. Morris; Shankar Vallabhajosula; Paul J. Christos; Naveed Akhtar; Joseph R. Osborne; Stanley J. Goldsmith; Steve Larson; Neeta Pandit Taskar; Howard I. Scher; Neil H. Bander; David M. Nanus

Purpose: To assess the efficacy of a single infusion of radiolabeled anti-prostate-specific membrane antigen (PSMA) monoclonal antibody J591 (lutetium-177; 177Lu) by prostate-specific antigen (PSA) decline, measurable disease response, and survival. Experimental Design: In this dual-center phase II study, two cohorts with progressive metastatic castration-resistant prostate cancer received one dose of 177Lu-J591 (15 patients at 65 mCi/m2, 17 at 70 mCi/m2) with radionuclide imaging. Expansion cohort (n = 15) received 70 mCi/m2 to verify response rate and examine biomarkers. Results: Forty-seven patients who progressed after hormonal therapies (55.3% also received prior chemotherapy) received 177Lu-J591. A total of 10.6% experienced ≥50% decline in PSA, 36.2% experienced ≥30% decline, and 59.6% experienced any PSA decline following their single treatment. One of 12 with measurable disease experienced a partial radiographic response (8 with stable disease). Sites of prostate cancer metastases were targeted in 44 of 47 (93.6%) as determined by planar imaging. All experienced reversible hematologic toxicity, with grade 4 thrombocytopenia occurring in 46.8% (29.8% received platelet transfusions) without significant hemorrhage. A total of 25.5% experienced grade 4 neutropenia, with one episode of febrile neutropenia. The phase I maximum tolerated dose (70 mCi/m2) resulted in more 30% PSA declines (46.9% vs. 13.3%, P = 0.048) and longer survival (21.8 vs. 11.9 months, P = 0.03), but also more grade 4 hematologic toxicity and platelet transfusions. No serious nonhematologic toxicity occurred. Those with poor PSMA imaging were less likely to respond. Conclusion: A single dose of 177Lu-J591 was well tolerated with reversible myelosuppression. Accurate tumor targeting and PSA responses were seen with evidence of dose response. Imaging biomarkers seem promising. Clin Cancer Res; 19(18); 5182–91. ©2013 AACR.


PLOS ONE | 2012

Functional characterization of circulating tumor cells with a prostate-cancer-specific microfluidic device.

Brian J. Kirby; Mona Jodari; Matthew Loftus; Gunjan Gakhar; Erica D. Pratt; Chantal Chanel-Vos; Jason P. Gleghorn; Steven M. Santana; He Liu; James P. Smith; Vicente N. Navarro; Scott T. Tagawa; Neil H. Bander; David M. Nanus; Paraskevi Giannakakou

Cancer metastasis accounts for the majority of cancer-related deaths owing to poor response to anticancer therapies. Molecular understanding of metastasis-associated drug resistance remains elusive due to the scarcity of available tumor tissue. Isolation of circulating tumor cells (CTCs) from the peripheral blood of patients has emerged as a valid alternative source of tumor tissue that can be subjected to molecular characterization. However, issues with low purity and sensitivity have impeded adoption to clinical practice. Here we report a novel method to capture and molecularly characterize CTCs isolated from castrate-resistant prostate cancer patients (CRPC) receiving taxane chemotherapy. We have developed a geometrically enhanced differential immunocapture (GEDI) microfluidic device that combines an anti-prostate specific membrane antigen (PSMA) antibody with a 3D geometry that captures CTCs while minimizing nonspecific leukocyte adhesion. Enumeration of GEDI-captured CTCs (defined as intact, nucleated PSMA+/CD45− cells) revealed a median of 54 cells per ml identified in CRPC patients versus 3 in healthy donors. Direct comparison with the commercially available CellSearch® revealed a 2–400 fold higher sensitivity achieved with the GEDI device. Confocal microscopy of patient-derived GEDI-captured CTCs identified the TMPRSS2:ERG fusion protein, while sequencing identified specific androgen receptor point mutation (T868A) in blood samples spiked with only 50 PC C4-2 cells. On-chip treatment of patient-derived CTCs with docetaxel and paclitaxel allowed monitoring of drug-target engagement by means of microtubule bundling. CTCs isolated from docetaxel-resistant CRPC patients did not show any evidence of drug activity. These measurements constitute the first functional assays of drug-target engagement in living circulating tumor cells and therefore have the potential to enable longitudinal monitoring of target response and inform the development of new anticancer agents.


European Urology | 2011

New Therapies for Castration-Resistant Prostate Cancer: Efficacy and Safety

Himisha Beltran; Tomasz M. Beer; Michael A. Carducci; Johann S. de Bono; Martin Gleave; Maha Hussain; William Kevin Kelly; Fred Saad; Cora N. Sternberg; Scott T. Tagawa; Ian F. Tannock

CONTEXT Prostate cancer (PCa) is the most common noncutaneous malignancy and the second leading cause of cancer mortality amongst men in the Western world. Up to 40% of men diagnosed with PCa will eventually develop metastatic disease, and although most respond to initial medical or surgical castration, progression to castration resistance is universal. The average survival for patients with castration-resistant prostate cancer (CRPC) is 2-3 yr. OBJECTIVE To discuss the biologic rationale and evidence supporting current management of patients with CRPC and to review promising novel agents. EVIDENCE ACQUISITION Electronic databases (PubMed, ClinicalTrials.gov), relevant journals, and conference proceedings were searched manually for preclinical studies, clinical trials, and biomarker analyses focused on the treatment of CRPC. Keywords included castrate resistant prostate cancer and: targeted therapy, novel therapy, immunotherapy, androgen therapy, bone therapy, mechanisms, biomarkers, and trial endpoints; no time range was specified. Information pertaining to current studies was discussed with key opinion leaders. EVIDENCE SYNTHESIS We focus on the efficacy and safety of approved agents, promising therapies that have proceeded to phase 3 evaluation, and those that have enhanced our understanding of the biology of CRPC. Biomarkers are considered in the context of novel targeted agents and immunotherapy. CONCLUSIONS CRPC has many targets. Four new agents with different mechanisms of action have recently been shown to have positive results in large phase 3 randomized trials, and have already been approved in the United States for CRPC: cabazitaxel, sipuleucel-T, denosumab, and abiraterone acetate. With our improved understanding of tumor biology and the incorporation of new prognostic and molecular biomarkers into clinical trials, we are making progress in the management of patients with CRPC.


Journal of Clinical Oncology | 2012

Challenges in Recognizing Treatment-Related Neuroendocrine Prostate Cancer

Himisha Beltran; Scott T. Tagawa; Kyung Park; Theresa Y. MacDonald; Matthew I. Milowsky; Juan Miguel Mosquera; Mark A. Rubin; David M. Nanus

Introduction The development of neuroendocrine prostate cancer (NEPC) is associated with aggressive disease, frequent visceral metastases, and a poor prognosis. Although NEPC rarely arises de novo, the amount of neuroendocrine differentiation of prostate adenocarcinoma increases with disease progression and in response to androgen deprivation therapy. NEPC does not express the androgen receptor (AR) and is considered clinically hormone refractory. With the introduction of new highly potent AR-targeted agents into the clinic (eg, abiraterone acetate, MDV3100), treatment-related NEPC (t-NEPC) is becoming an even more important disease to recognize. We recently demonstrated that amplification of the genes aurora kinase A (AURKA) and N-myc (MYCN) are involved in neuroendocrine differentiation of prostate cancer, and these tumors are potentially targetable with Aurora kinase inhibitor therapy. Here, we report three cases of t-NEPC that arose in men known to have prostate adenocarcinoma and illustrate challenges in recognizing this clinical entity and in patient management.


JAMA Oncology | 2015

Whole-Exome Sequencing of Metastatic Cancer and Biomarkers of Treatment Response

Himisha Beltran; Kenneth Eng; Juan Miguel Mosquera; Alessandro Romanel; Hanna Rennert; Myriam Kossai; Chantal Pauli; Bishoy Faltas; Jacqueline Fontugne; Kyung Park; Jason R. Banfelder; Davide Prandi; Neel Madhukar; Tuo Zhang; Jessica Padilla; Noah Greco; Terra J. McNary; Erick Herrscher; David Wilkes; Theresa Y. MacDonald; Hui Xue; Vladimir Vacic; Anne-Katrin Emde; Dayna Oschwald; Adrian Y. Tan; Zhengming Chen; Colin Collins; Martin Gleave; Yuzhuo Wang; Dimple Chakravarty

IMPORTANCE Understanding molecular mechanisms of response and resistance to anticancer therapies requires prospective patient follow-up and clinical and functional validation of both common and low-frequency mutations. We describe a whole-exome sequencing (WES) precision medicine trial focused on patients with advanced cancer. OBJECTIVE To understand how WES data affect therapeutic decision making in patients with advanced cancer and to identify novel biomarkers of response. DESIGN, SETTING, AND PATIENTS Patients with metastatic and treatment-resistant cancer were prospectively enrolled at a single academic center for paired metastatic tumor and normal tissue WES during a 19-month period (February 2013 through September 2014). A comprehensive computational pipeline was used to detect point mutations, indels, and copy number alterations. Mutations were categorized as category 1, 2, or 3 on the basis of actionability; clinical reports were generated and discussed in precision tumor board. Patients were observed for 7 to 25 months for correlation of molecular information with clinical response. MAIN OUTCOMES AND MEASURES Feasibility, use of WES for decision making, and identification of novel biomarkers. RESULTS A total of 154 tumor-normal pairs from 97 patients with a range of metastatic cancers were sequenced, with a mean coverage of 95X and 16 somatic alterations detected per patient. In total, 16 mutations were category 1 (targeted therapy available), 98 were category 2 (biologically relevant), and 1474 were category 3 (unknown significance). Overall, WES provided informative results in 91 cases (94%), including alterations for which there is an approved drug, there are therapies in clinical or preclinical development, or they are considered drivers and potentially actionable (category 1-2); however, treatment was guided in only 5 patients (5%) on the basis of these recommendations because of access to clinical trials and/or off-label use of drugs. Among unexpected findings, a patient with prostate cancer with exceptional response to treatment was identified who harbored a somatic hemizygous deletion of the DNA repair gene FANCA and putative partial loss of function of the second allele through germline missense variant. Follow-up experiments established that loss of FANCA function was associated with platinum hypersensitivity both in vitro and in patient-derived xenografts, thus providing biologic rationale and functional evidence for his extreme clinical response. CONCLUSIONS AND RELEVANCE The majority of advanced, treatment-resistant tumors across tumor types harbor biologically informative alterations. The establishment of a clinical trial for WES of metastatic tumors with prospective follow-up of patients can help identify candidate predictive biomarkers of response.

Collaboration


Dive into the Scott T. Tagawa's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Naveed Akhtar

Hamad Medical Corporation

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge