Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Paraskevi Giannakakou is active.

Publication


Featured researches published by Paraskevi Giannakakou.


Journal of Biological Chemistry | 1997

Paclitaxel-resistant Human Ovarian Cancer Cells Have Mutant β-Tubulins That Exhibit Impaired Paclitaxel-driven Polymerization

Paraskevi Giannakakou; Dan L. Sackett; Yoon-Koo Kang; Zhirong Zhan; Jeroen T. M. Buters; Tito Fojo; Marianne S. Poruchynsky

Acquired resistance to paclitaxel can be mediated by P-glycoprotein or by alterations involving tubulin. We report two paclitaxel-resistant sublines derived from 1A9 human ovarian carcinoma cells. Single-step paclitaxel selection with verapamil yielded two clones that are resistant to paclitaxel and collaterally sensitive to vinblastine. The resistant sublines are not paclitaxel-dependent, and resistance remained stable after 3 years of drug-free culture. All cell lines accumulate [3H]paclitaxel equally, and no MDR-1mRNA was detected by polymerase chain reaction following reverse transcription. Total tubulin content is similar, but the polymerized fraction increased in parental but not in resistant cells following the paclitaxel addition. Purified tubulin from parental cells demonstrated paclitaxel-driven increased polymerization, in contrast to resistant cell tubulin, which did not polymerize under identical conditions. In contrast, epothilone B, an agent to which the resistant cells retained sensitivity, increased assembly. Comparable expression of β-tubulin isotypes was found in parental and resistant cells, with predominant expression of the M40 and β2 isotypes. Sequence analysis demonstrated acquired mutations in the M40 isotype at nucleotide 810 (T → G; Phe270 → Val) in 1A9PTX10 cells and nucleotide 1092 (G → A; Ala364 → Thr) in 1A9PTX22 cells. These results identify residues β270 and β364 as important modulators of paclitaxel’s interaction with tubulin.


Cancer Cell | 2003

2ME2 inhibits tumor growth and angiogenesis by disrupting microtubules and dysregulating HIF.

Nicola J. Mabjeesh; Daniel Escuin; Theresa M. LaVallee; Victor Pribluda; Glenn M. Swartz; Michelle S. Johnson; Margaret T. Willard; Hua Zhong; Jonathan W. Simons; Paraskevi Giannakakou

Inhibition of angiogenesis is an important new modality for cancer treatment. 2-methoxyestradiol (2ME2) is a novel antitumor and antiangiogenic agent, currently in clinical trials, whose molecular mechanism of action remains unclear. Herein, we report that 2ME2 inhibits tumor growth and angiogenesis at concentrations that efficiently disrupt tumor microtubules (MTs) in vivo. Mechanistically, we found that 2ME2 downregulates hypoxia-inducible factor-1 (HIF) at the posttranscriptional level and inhibits HIF-1-induced transcriptional activation of VEGF expression. Inhibition of HIF-1 occurs downstream of the 2ME2/tubulin interaction, as disruption of interphase MTs is required for HIF-alpha downregulation. These data establish 2ME2 as a small molecule inhibitor of HIF-1 and provide a mechanistic link between the disruption of the MT cytoskeleton and inhibition of angiogenesis.


Journal of Biological Chemistry | 1997

Activities of the Microtubule-stabilizing Agents Epothilones A and B with Purified Tubulin and in Cells Resistant to Paclitaxel (Taxol®)

Richard J. Kowalski; Paraskevi Giannakakou; Ernest Hamel

Epothilones A and B, natural products with minimal structural analogy to taxoids, have effects similar to those of paclitaxel (Taxol®) in cultured cells and on microtubule protein, but differ from paclitaxel in retaining activity in multidrug-resistant cells. We examined interactions of the epothilones with purified tubulin and additional cell lines, including a paclitaxel-resistant ovarian carcinoma line with an altered β-tubulin. The epothilones, like paclitaxel, induced tubulin to form microtubules at low temperatures and without GTP and/or microtubule-associated proteins. The epothilones are competitive inhibitors of the binding of [3H]paclitaxel to tubulin polymers. The apparent Ki values for epothilones A and B were 1.4 and 0.7 μM by Hanes analysis and 0.6 and 0.4 μM by Dixon analysis. In the paclitaxel-sensitive human cell lines we examined, epothilone B had greater antiproliferative activity than epothilone A or paclitaxel, while epothilone A was usually less active than paclitaxel. A multidrug-resistant colon carcinoma line and the paclitaxel-resistant ovarian line retained sensitivity to the epothilones. With Potorous tridactylis kidney epithelial (PtK2) cells examined by indirect immunofluorescence, microtubule bundles appeared more rapidly following epothilone B treatment, and there were different proportions of various mitotic aberrations following treatment with different drugs.


Nature Cell Biology | 2000

p53 is associated with cellular microtubules and is transported to the nucleus by dynein.

Paraskevi Giannakakou; Dan L. Sackett; Yvona Ward; Kevin R. Webster; Mikhail V. Blagosklonny; Tito Fojo

Here we show that p53 protein is physically associated with tubulin in vivo and in vitro, and that it localizes to cellular microtubules. Treatment with vincristine or paclitaxel before DNA-damage or before leptomycin B treatment reduces nuclear accumulation of p53 and expression of mdm2 and p21. Overexpression of dynamitin or microinjection of anti-dynein antibody before DNA damage abrogates nuclear accumulation of p53. Our results indicate that transport of p53 along microtubules is dynein-dependent. The first 25 amino acids of p53 contain the residues that are essential for binding to microtubules. We propose that functional microtubules and the dynein motor protein participate in transport of p53 and facilitate its accumulation in the nucleus after DNA damage.


Cancer Research | 2011

Taxane-Induced Blockade to Nuclear Accumulation of the Androgen Receptor Predicts Clinical Responses in Metastatic Prostate Cancer

Medha S Darshan; Matthew Loftus; Maria Thadani-Mulero; Ben P Levy; Daniel Escuin; Xi Kathy Zhou; Ada Gjyrezi; Chantal Chanel-Vos; Ruoqian Shen; Scott T. Tagawa; Neil H. Bander; David M. Nanus; Paraskevi Giannakakou

Prostate cancer progression requires active androgen receptor (AR) signaling which occurs following translocation of AR from the cytoplasm to the nucleus. Chemotherapy with taxanes improves survival in patients with castrate resistant prostate cancer (CRPC). Taxanes induce microtubule stabilization, mitotic arrest, and apoptotic cell death, but recent data suggest that taxanes can also affect AR signaling. Here, we report that taxanes inhibit ligand-induced AR nuclear translocation and downstream transcriptional activation of AR target genes such as prostate-specific antigen. AR nuclear translocation was not inhibited in cells with acquired β-tubulin mutations that prevent taxane-induced microtubule stabilization, confirming a role for microtubules in AR trafficking. Upon ligand activation, AR associated with the minus-end-microtubule motor dynein, thereby trafficking on microtubules to translocate to the nucleus. Analysis of circulating tumor cells (CTC) isolated from the peripheral blood of CRPC patients receiving taxane chemotherapy revealed a significant correlation between AR cytoplasmic sequestration and clinical response to therapy. These results indicate that taxanes act in CRPC patients at least in part by inhibiting AR nuclear transport and signaling. Further, they suggest that monitoring AR subcellular localization in the CTCs of CRPC patients might predict clinical responses to taxane chemotherapy.


Lab on a Chip | 2010

Capture of circulating tumor cells from whole blood of prostate cancer patients using geometrically enhanced differential immunocapture (GEDI) and a prostate-specific antibody.

Jason P. Gleghorn; Erica D. Pratt; Denise Denning; He Liu; Neil H. Bander; Scott T. Tagawa; David M. Nanus; Paraskevi Giannakakou; Brian J. Kirby

Geometrically enhanced differential immunocapture (GEDI) and an antibody for prostate-specific membrane antigen (PSMA) are used for high-efficiency and high-purity capture of prostate circulating tumor cells from peripheral whole blood samples of castrate-resistant prostate cancer patients.


Oncogene | 2001

Low concentrations of paclitaxel induce cell type-dependent p53, p21 and G1/G2 arrest instead of mitotic arrest: molecular determinants of paclitaxel-induced cytotoxicity

Paraskevi Giannakakou; Robert W. Robey; Tito Fojo; Mikhail V. Blagosklonny

Paclitaxel (PTX), a microtubule-active agent, blocks cell proliferation by inhibiting mitotic progression leading to mitotic and postmitotic arrest and cell death. Here we demonstrate for the first time that very low concentrations of PTX (3–6 nM) can completely inhibit cell proliferation without arresting cells at mitosis. At these low concentrations that are insufficient to inhibit mitotic progression, PTX induced both p53 and p21 causing G1 and G2 arrest in A549. In contrast, low PTX concentrations failed to induce G1 and G2 arrest in A549/E6 cells, that do not express p53. Furthermore, we observed that the levels of p53 and p21 induced by adriamycin and by low concentrations of PTX in A549 cells were comparable. This observation led us to conclude that low concentrations of PTX can induce p53 and p21 sufficiently to cause G1 and G2. Many other cell lines, including HCT116 cells, do not readily upregulate p53 in response to PTX, and therefore undergo exclusively mitotic and postmitotic arrest after PTX treatment. At low concentrations that do not cause mitotic arrest, PTX did not significantly inhibit proliferation of these cells. In HCT116 cells, loss of p53 (HCT/p53−/−) or p21 (HCT/p21−/−) affects both Bax and Bcl-2 expression. In cells lacking p53, levels of Bax and p21 were decreased. In cells lacking p21, levels of wt p53 were highly increased to compensate for the loss of p21. This in turn results in upregulation of Bax and downregulation of Bcl-2 resulting in an increase of the apoptotic Bax/Bcl2 ratio consistent with increased sensitivity of these cells to apoptotic stimuli. High levels of p53 and Bax/Bcl-2 ratio can also explain why loss of p21 is rarely found in human cancer.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Enhanced microtubule-dependent trafficking and p53 nuclear accumulation by suppression of microtubule dynamics

Paraskevi Giannakakou; Michel Y. Nakano; K. C. Nicolaou; Aurora O'Brate; Jian Yu; Mikhail V. Blagosklonny; Urs F. Greber; Tito Fojo

The tumor suppressor protein p53 localizes to microtubules (MT) and, in response to DNA damage, is transported to the nucleus via the MT minus-end-directed motor protein dynein. Dynein is also responsible for MT-mediated nuclear targeting of adenovirus type 2 (Ad2). Here we show that treatment with low concentrations of MT-targeting compounds (MTCs) that do not disrupt the MT network but are known to suppress MT dynamics enhanced p53 nuclear accumulation, and the activation of the p53-downstream target genes. p53 nuclear accumulation required binding of MTCs to MTs and enhanced the induction of p53-up-regulated modulator of apoptosis (PUMA) mRNA and apoptosis on challenging cells with the DNA-damaging drug adriamycin. Low concentrations of MTCs enhanced the rate of movement of fluorescent Ad2 to the nucleus and increased the nuclear targeting efficiency of Ad2. We propose that suppression of MT dynamics by low concentrations of MTCs enhances MT-dependent trafficking toward the minus ends of MTs and facilitates nuclear targeting.


Cancer Research | 2005

Both Microtubule-Stabilizing and Microtubule-Destabilizing Drugs Inhibit Hypoxia-Inducible Factor-1α Accumulation and Activity by Disrupting Microtubule Function

Daniel Escuin; Erik R. Kline; Paraskevi Giannakakou

We have recently identified a mechanistic link between disruption of the microtubule cytoskeleton and inhibition of tumor angiogenesis via the hypoxia-inducible factor-1 (HIF-1) pathway. Based on this model, we hypothesized that other microtubule-targeting drugs may have a similar effect on HIF-1alpha. To test that hypothesis, we studied the effects of different clinically relevant microtubule-disrupting agents, including taxotere, epothilone B, discodermolide, vincristine, 2-methoxyestradiol, and colchicine. In all cases, HIF-1alpha protein, but not mRNA, was down-regulated in a drug dose-dependent manner. In addition, HIF-1alpha transcriptional activity was also inhibited by all drugs tested. To further examine whether these effects were dependent on microtubule network disruption, we tested the ability of epothilone B to inhibit HIF-1alpha protein in the human ovarian cancer cell line 1A9 and its beta-tubulin mutant epothilone-resistant subclone 1A9/A8. Our data showed that epothilone B treatment down-regulated HIF-1alpha protein in the parental 1A9 cells but had no effect in the resistant 1A9/A8 cells. These observations were confirmed by confocal microscopy, which showed impaired nuclear accumulation of HIF-1alpha in parental 1A9 cells at epothilone B concentrations that induced extensive microtubule stabilization. In contrast, epothilone B treatment had no effect on either microtubules or HIF-1alpha nuclear accumulation in the resistant 1A9/A8 cells. Furthermore, epothilone B inhibited HIF-1 transcriptional activity in 1A9 cells, as evidenced by a hypoxia response element-luciferase reporter assay, but had no effect on HIF-1 activity in the resistant 1A9/A8 cells. These data directly link beta-tubulin drug binding with HIF-1alpha protein inhibition. Our results further provide a strong rationale for testing taxanes and epothilones in clinical trials targeting HIF-1 in cancer patients.


PLOS ONE | 2012

Functional characterization of circulating tumor cells with a prostate-cancer-specific microfluidic device.

Brian J. Kirby; Mona Jodari; Matthew Loftus; Gunjan Gakhar; Erica D. Pratt; Chantal Chanel-Vos; Jason P. Gleghorn; Steven M. Santana; He Liu; James P. Smith; Vicente N. Navarro; Scott T. Tagawa; Neil H. Bander; David M. Nanus; Paraskevi Giannakakou

Cancer metastasis accounts for the majority of cancer-related deaths owing to poor response to anticancer therapies. Molecular understanding of metastasis-associated drug resistance remains elusive due to the scarcity of available tumor tissue. Isolation of circulating tumor cells (CTCs) from the peripheral blood of patients has emerged as a valid alternative source of tumor tissue that can be subjected to molecular characterization. However, issues with low purity and sensitivity have impeded adoption to clinical practice. Here we report a novel method to capture and molecularly characterize CTCs isolated from castrate-resistant prostate cancer patients (CRPC) receiving taxane chemotherapy. We have developed a geometrically enhanced differential immunocapture (GEDI) microfluidic device that combines an anti-prostate specific membrane antigen (PSMA) antibody with a 3D geometry that captures CTCs while minimizing nonspecific leukocyte adhesion. Enumeration of GEDI-captured CTCs (defined as intact, nucleated PSMA+/CD45− cells) revealed a median of 54 cells per ml identified in CRPC patients versus 3 in healthy donors. Direct comparison with the commercially available CellSearch® revealed a 2–400 fold higher sensitivity achieved with the GEDI device. Confocal microscopy of patient-derived GEDI-captured CTCs identified the TMPRSS2:ERG fusion protein, while sequencing identified specific androgen receptor point mutation (T868A) in blood samples spiked with only 50 PC C4-2 cells. On-chip treatment of patient-derived CTCs with docetaxel and paclitaxel allowed monitoring of drug-target engagement by means of microtubule bundling. CTCs isolated from docetaxel-resistant CRPC patients did not show any evidence of drug activity. These measurements constitute the first functional assays of drug-target engagement in living circulating tumor cells and therefore have the potential to enable longitudinal monitoring of target response and inform the development of new anticancer agents.

Collaboration


Dive into the Paraskevi Giannakakou's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tito Fojo

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge