Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Scott W. Hiebert is active.

Publication


Featured researches published by Scott W. Hiebert.


Cell | 1996

AML1, the target of multiple chromosomal translocations in human leukemia, is essential for normal fetal liver hematopoiesis.

Tsukasa Okuda; Jan van Deursen; Scott W. Hiebert; Gerard Grosveld; James R. Downing

The AML1-CBF beta transcription factor is the most frequent target of chromosomal rearrangements in human leukemia. To investigate its normal function, we generated mice lacking AML1. Embryos with homozygous mutations in AML1 showed normal morphogenesis and yolk sac-derived erythropoiesis, but lacked fetal liver hematopoiesis and died around E12.5. Sequentially targeted AML1-/-es cell retained their capacity to differentiate into primitive erythroid cells in vitro; however, no myeloid or erythroid progenitors of definitive hematopoietic origin were detected in either the yolk sac or fetal livers of mutant embryos. Moreover, this hematopoietic defect was intrinsic to the stem cells in that AML1-/-ES cells failed to contribute to hematopoiesis in chimeric animals. These results suggest that AML1-regulated target genes are essential for definitive hematopoiesis of all lineages.


Cell | 1991

The E2F transcription factor is a cellular target for the RB protein

Srikumar P. Chellappan; Scott W. Hiebert; Maria Mudryj; Jonathan M. Horowitz; Joseph R. Nevins

Although it is generally believed that the product of the retinoblastoma susceptibility gene (RB1) is an important regulator of cell proliferation, the biochemical mechanism for its action is unclear. We now show that the RB protein is found in a complex with the E2F transcription factor and that only the under phosphorylated form of RB is in the E2F complex. Moreover, the adenovirus E1A protein can dissociate the E2F-RB complex, dependent on E1A sequence also critical for E1A to bind to RB. These sequences are also critical for E1A to immortalize primary cell cultures and to transform in conjunction with other oncogenes. Taken together, these results suggest that the interaction of RB with E2F is an important event in the control of cellular proliferation and that the dissociation of the complex is part of the mechanism by which E1A inactivates RB function.


Molecular and Cellular Biology | 1993

Identification of AML-1 and the (8;21) translocation protein (AML-1/ETO) as sequence-specific DNA-binding proteins: the runt homology domain is required for DNA binding and protein-protein interactions.

Shari Meyers; James R. Downing; Scott W. Hiebert

The AML1 gene on chromosome 21 is disrupted in the (8;21)(q22;q22) translocation associated with acute myelogenous leukemia and encodes a protein with a central 118-amino-acid domain with 69% homology to the Drosophila pair-rule gene, runt. We demonstrate that AML-1 is a DNA-binding protein which specifically interacts with a sequence belonging to the group of enhancer core motifs, TGT/cGGT. Electrophoretic mobility shift analysis of cell extracts identified two AML-1-containing protein-DNA complexes whose electrophoretic mobilities were slower than those of complexes formed with AML-1 produced in vitro. Mixing of in vitro-produced AML-1 with cell extracts prior to gel mobility shift analysis resulted in the formation of higher-order complexes. Deletion mutagenesis of AML-1 revealed that the runt homology domain mediates both sequence-specific DNA binding and protein-protein interactions. The hybrid product, AML-1/ETO, which results from the (8;21) translocation and retains the runt homology domain, both recognizes the AML-1 consensus sequence and interacts with other cellular proteins.


Journal of Cellular Biochemistry | 1997

Runt homology domain proteins in osteoblast differentiation: AML3/CBFA1 is a major component of a bone‐specific complex

Chaitali Banerjee; Laura R. McCabe; Je-Yong Choi; Scott W. Hiebert; Janet L. Stein; Gary S. Stein; Jane B. Lian

The AML/CBFA family of runt homology domain (rhd) transcription factors regulates expression of mammalian genes of the hematopoietic lineage. AML1, AML2, and AML3 are the three AML genes identified to date which influence myeloid cell growth and differentiation. Recently, AML‐related proteins were identified in an osteoblast‐specific promoter binding complex that functionally modulates bone‐restricted transcription of the osteocalcin gene. In the present study we demonstrate that in primary rat osteoblasts AML‐3 is the AML family member present in the osteoblast‐specific complex. Antibody specific for AML‐3 completely supershifts this complex, in contrast to antibodies with specificity for AML‐1 or AML‐2. AML‐3 is present as a single 5.4 kb transcript in bone tissues. To establish the functional involvement of AML factors in osteoblast differentiation, we pursued antisense strategies to alter expression of rhd genes. Treatment of osteoblast cultures with rhd antisense oligonucleotides significantly decreased three parameters which are linked to differentiation of normal diploid osteoblasts: the representation of alkaline phosphatase–positive cells, osteocalcin production, and the formation of mineralized nodules. Our findings indicate that AML‐3 is a key transcription factor in bone cells and that the activity of rhd proteins is required for completion of osteoblast differentiation. J. Cell. Biochem. 66:1–8, 1997.


Molecular and Cellular Biology | 1998

ETO, a target of t(8;21) in acute leukemia, interacts with the N-CoR and mSin3 corepressors

Bart Lutterbach; Jennifer J. Westendorf; Bryan Linggi; Andrea Patten; Mariko Moniwa; James R. Davie; Khanh D. Huynh; Vivian J. Bardwell; Robert M. Lavinsky; Michael G. Rosenfeld; Christopher K. Glass; Edward Seto; Scott W. Hiebert

ABSTRACT t(8;21) is one of the most frequent translocations associated with acute myeloid leukemia. It produces a chimeric protein, acute myeloid leukemia-1 (AML-1)–eight-twenty-one (ETO), that contains the amino-terminal DNA binding domain of the AML-1 transcriptional regulator fused to nearly all of ETO. Here we demonstrate that ETO interacts with the nuclear receptor corepressor N-CoR, the mSin3 corepressors, and histone deacetylases. Endogenous ETO also cosediments on sucrose gradients with mSin3A, N-CoR, and histone deacetylases, suggesting that it is a component of one or more corepressor complexes. Deletion mutagenesis indicates that ETO interacts with mSin3A independently of its association with N-CoR. Single amino acid mutations that impair the ability of ETO to interact with the central portion of N-CoR affect the ability of the t(8;21) fusion protein to repress transcription. Finally, AML-1/ETO associates with histone deacetylase activity and a histone deacetylase inhibitor impairs the ability of the fusion protein to repress transcription. Thus, t(8;21) fuses a component of a corepressor complex to AML-1 to repress transcription.


Molecular and Cellular Biology | 1996

CCAAT enhancer-binding protein (C/EBP) and AML1 (CBF alpha2) synergistically activate the macrophage colony-stimulating factor receptor promoter.

Dong-Er Zhang; Christopher J. Hetherington; Shari Meyers; Kristina L. Rhoades; Christopher Larson; Hui-Min Chen; Scott W. Hiebert; Daniel G. Tenen

Transcription factors play a key role in the development and differentiation of specific lineages from multipotential progenitors. Identification of these regulators and determining the mechanism of how they activate their target genes are important for understanding normal development of monocytes and macrophages and the pathogenesis of a common form of adult acute leukemia, in which the differentiation of monocytic cells is blocked. Our previous work has shown that the monocyte-specific expression of the macrophage colony-stimulating factor (M-CSF) receptor is regulated by three transcription factors interacting with critical regions of the M-CSF receptor promoter, including PU.1 and AML1.PU.1 is essential for myeloid cell development, while the AML1 gene is involved in several common leukemia-related chromosome translocations, although its role in hematopoiesis has not been fully identified. Along with AML1, a third factor, Mono A, interacts with a small region of the promoter which can function as a monocyte-specific enhancer when multimerized and linked to a heterologous basal promoter. Here, we demonstrate by electrophoretic mobility shift assays with monocytic nuclear extracts, COS-7 cell-transfected factors, and specific antibodies that the monocyte-enriched factor Mono A is CCAAT enhancer-binding protein (C/EBP). C/EBP has been shown previously to be an important transcription factor involved in hepatocyte and adipocyte differentiation; in hematopoietic cells, C/EBP is specifically expressed in myeloid cells. In vitro binding analysis reveals a physical interaction between C/EBP and AML1. Further transfection studies show that C/EBP and AML1 in concert with the AML1 heterodimer partner CBF beta synergistically activate M-CSF receptor by more then 60 fold. These results demonstrate that C/EBP and AML1 are important factors for regulating a critical hematopoietic growth factor receptor, the M-CSF receptor, suggesting a mechanism of how the AML1 fusion protein could contribute to acute myeloid leukemia. Furthermore, they demonstrate physical and functional interactions between AML1 and C/EBP transcription factor family members.


Molecular and Cellular Biology | 1995

The t(8;21) fusion protein interferes with AML-1B-dependent transcriptional activation.

Shari Meyers; Noel Lenny; Scott W. Hiebert

The AML-1/CBF beta transcription factor complex is targeted by both the t(8;21) and the inv(16) chromosomal alterations, which are frequently observed in acute myelogenous leukemia. AML-1 is a site-specific DNA-binding protein that recognizes the enhancer core motif TGTGGT. The t(8;21) translocation fuses the first 177 amino acids of AML-1 to MTG8 (also known as ETO), generating a chimeric protein that retains the DNA-binding domain of AML-1. Analysis of endogenous AML-1 DNA-binding complexes suggested the presence of at least two AML-1 isoforms. Accordingly, we screened a human B-cell cDNA library and isolated a larger, potentially alternatively spliced, form of AML1, termed AML1B. AML-1B is a protein of 53 kDa that binds to a consensus AML-1-binding site and complexes with CBF beta. Subcellular fractionation experiments demonstrated that both AML-1 and AML-1/ETO are efficiently extracted from the nucleus under ionic conditions but that AML-1B is localized to a salt-resistant nuclear compartment. Analysis of the transcriptional activities of AML-1, AML-1B, and AML-1/ETO demonstrated that only AML-1B activates transcription from the T-cell receptor beta enhancer. Mixing experiments indicated that AML-1/ETO can efficiently block AML-1B-dependent transcriptional activation, suggesting that the t(8;21) translocation creates a dominant interfering protein.


Molecular and Cellular Biology | 2001

ETO, a Target of t(8;21) in Acute Leukemia, Makes Distinct Contacts with Multiple Histone Deacetylases and Binds mSin3A through Its Oligomerization Domain

Joseph M. Amann; John Nip; David K. Strom; Bart Lutterbach; Hironori Harada; Noel Lenny; James R. Downing; Shari Meyers; Scott W. Hiebert

ABSTRACT t(8;21) and t(16;21) create two fusion proteins, AML-1–ETO and AML-1–MTG16, respectively, which fuse the AML-1 DNA binding domain to putative transcriptional corepressors, ETO and MTG16. Here, we show that distinct domains of ETO contact the mSin3A and N-CoR corepressors and define two binding sites within ETO for each of these corepressors. In addition, of eight histone deacetylases (HDACs) tested, only the class I HDACs HDAC-1, HDAC-2, and HDAC-3 bind ETO. However, these HDACs bind ETO through different domains. We also show that the murine homologue of MTG16, ETO-2, is also a transcriptional corepressor that works through a similar but distinct mechanism. Like ETO, ETO-2 interacts with N-CoR, but ETO-2 fails to bind mSin3A. Furthermore, ETO-2 binds HDAC-1, HDAC-2, and HDAC-3 but also interacts with HDAC-6 and HDAC-8. In addition, we show that expression of AML-1–ETO causes disruption of the cell cycle in the G1 phase. Disruption of the cell cycle required the ability of AML-1–ETO to repress transcription because a mutant of AML-1–ETO, Δ469, which removes the majority of the corepressor binding sites, had no phenotype. Moreover, treatment of AML-1–ETO-expressing cells with trichostatin A, an HDAC inhibitor, restored cell cycle control. Thus, AML-1–ETO makes distinct contacts with multiple HDACs and an HDAC inhibitor biologically inactivates this fusion protein.


Molecular and Cellular Biology | 1998

The t(8;21) Fusion Product, AML-1–ETO, Associates with C/EBP-α, Inhibits C/EBP-α-Dependent Transcription, and Blocks Granulocytic Differentiation

Jennifer J. Westendorf; Cindy M. Yamamoto; Noel Lenny; James R. Downing; Michael E. Selsted; Scott W. Hiebert

ABSTRACT AML-1B is a hematopoietic transcription factor that is functionally inactivated by multiple chromosomal translocations in human acute myeloblastic and B-cell lymphocytic leukemias. The t(8;21)(q22;q22) translocation replaces the C terminus, including the transactivation domain of AML-1B, with ETO, a nuclear protein of unknown function. We previously showed that AML-1–ETO is a dominant inhibitor of AML-1B-dependent transcriptional activation. Here we demonstrate that AML-1–ETO also inhibits C/EBP-α-dependent activation of the myeloid cell-specific, rat defensin NP-3 promoter. AML-1B bound the core enhancer motifs present in the NP-3 promoter and activated transcription approximately sixfold. Similarly, C/EBP-α bound NP-3 promoter sequences and activated transcription approximately sixfold. Coexpression of C/EBP-α with AML-1B or its family members, AML-2 and murine AML-3, synergistically activated the NP-3 promoter up to 60-fold. The t(8;21) product, AML-1–ETO, repressed AML-1B-dependent activation of NP-3 and completely inhibited C/EBP-α-dependent activity as well as the synergistic activation. In contrast, theinv(16) product, which indirectly targets AML family members by fusing their heterodimeric DNA binding partner, CBF-β, to the myosin heavy chain, inhibited AML-1B but not C/EBP-α activation or the synergistic activation. AML-1–ETO and C/EBP-α were coimmunoprecipitated and thus physically interact in vivo. Deletion mutants demonstrated that the C terminus of ETO was required for AML-1–ETO-mediated repression of the synergistic activation but not for association with C/EBP-α. Finally, overexpression of AML-1–ETO in myeloid progenitor cells prevented granulocyte colony-stimulating factor-induced differentiation. Thus, AML-1–ETO may contribute to leukemogenesis by specifically inhibiting C/EBP-α- and AML-1B-dependent activation of myeloid promoters and blocking differentiation.


Molecular and Cellular Biology | 1996

The t (12;21) translocation converts AML-1B from an activator to a repressor of transcription

Scott W. Hiebert; W Sun; J N Davis; Todd R. Golub; Sheila A. Shurtleff; A Buijs; James R. Downing; Gerard Grosveld; M F Roussell; D G Gilliland; Noel Lenny; Shari Meyers

The t(12;21) translocation is present in up to 30% of childhood B-cell acute lymphoblastic and fuses a potential dimerization motif from the ets-related factor TEL to the N terminus of AML1. The t(12;21) translocation encodes a 93-kDa fusion protein that localizes to a high-salt- and detergent-resistant nuclear compartment. This protein binds the enhancer core motif, TGTGGT, and interacts with the AML-1-binding protein, core-binding factor beta. Although TEL/AML-1B retains the C-terminal domain of AML-1B that is required for transactivation of the T-cell receptor beta enhancer, it fails to activate transcription but rather inhibits the basal activity of this enhancer. TEL/AML-1B efficiently interferes with AML-1B dependent transactivation of the T-cell receptor beta enhancer, and coexpression of wild-type TEL does not reverse this inhibition. The N-terminal TEL helix-loop-helix domain is essential for TEL/AML-1B-mediated repression. Thus, the t(12;21) fusion protein dominantly interferes with AML-1B-dependent transcription, suggesting that the inhibition of expression of AML-1 genes is critical for B-cell leukemogenesis.

Collaboration


Dive into the Scott W. Hiebert's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shari Meyers

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Noel Lenny

St. Jude Children's Research Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge