Scott W. Stoker
University of Wisconsin-Madison
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Scott W. Stoker.
Journal of Clinical Investigation | 1996
Matthew R. Wolff; Scott H. Buck; Scott W. Stoker; Marion L. Greaser; Robert M. Mentzer
To examine the role of alterations in myofibrillar function in human dilated cardiomyopathies, we determined isometric tension-calcium relations in permeabilized myocytesized myofibrillar preparations (n = 16) obtained from left ventricular biopsies from nine patients with dilated cardiomyopathy (DCM) during cardiac transplantation or left ventricular assist device implantation. Similar preparations (n = 10) were obtained from six normal hearts used for cardiac transplantation. Passive and maximal Ca2+-activated tensions were similar for the two groups. However, the calcium sensitivity of isometric tension was increased in DCM compared to nonfailing preparations ([Ca2+]50=2.46+/-0.49 microM vs 3.24+/-0.51 microM, P < 0.001). In vitro treatment with the catalytic subunit of protein kinase A (PKA) decreased calcium sensitivity of tension to a greater degree in failing than in normal preparations. Further, isometric tension-calcium relations in failing and normal myofibrillar preparations were similar after PKA treatment. These findings suggest that the increased calcium sensitivity of isometric tension in DCM may be due at least in part to a reduction of the beta-adrenergically mediated (PKA-dependent) phosphorylation of myofibrillar regulatory proteins such as troponin I and/or C-protein.
Journal of Biological Chemistry | 2008
Noaman Hasan; Melissa J. Longacre; Scott W. Stoker; Thirajit Boonsaen; Sarawut Jitrapakdee; Mindy A. Kendrick; John C. Wallace; Michael J. MacDonald
Anaplerosis, the synthesis of citric acid cycle intermediates, by pancreatic beta cell mitochondria has been proposed to be as important for insulin secretion as mitochondrial energy production. However, studies designed to lower the rate of anaplerosis in the beta cell have been inconclusive. To test the hypothesis that anaplerosis is important for insulin secretion, we lowered the activity of pyruvate carboxylase (PC), the major enzyme of anaplerosis in the beta cell. Stable transfection of short hairpin RNA was used to generate a number of INS-1 832/13-derived cell lines with various levels of PC enzyme activity that retained normal levels of control enzymes, insulin content, and glucose oxidation. Glucose-induced insulin release was decreased in proportion to the decrease in PC activity. Insulin release in response to pyruvate alone, 2-aminobicyclo[2,2,1]heptane-2-carboxylic acid (BCH) plus glutamine, or methyl succinate plus β-hydroxybutyrate was also decreased in the PC knockdown cells. Consistent with a block at PC, the most PC-deficient cells showed a metabolic crossover point at PC with increased basal and/or glucose-stimulated pyruvate plus lactate and decreased malate and citrate. In addition, in BCH plus glutamine-stimulated PC knockdown cells, pyruvate plus lactate was increased, whereas citrate was severely decreased, and malate and aspartate were slightly decreased. The incorporation of 14C into lipid from [U-14C]glucose was decreased in the PC knockdown cells. The results confirm the central importance of PC and anaplerosis to generate metabolites from glucose that support insulin secretion and even suggest PC is important for insulin secretion stimulated by noncarbohydrate insulin secretagogues.
Journal of Biological Chemistry | 2011
Michael J. MacDonald; Melissa J. Longacre; Scott W. Stoker; Mindy A. Kendrick; Ansaya Thonpho; Laura J. Brown; Noaman Hasan; Sarawut Jitrapakdee; Toshiyuki Fukao; Matthew S. Hanson; Luis A. Fernandez; Jon S. Odorico
Anaplerosis, the net synthesis in mitochondria of citric acid cycle intermediates, and cataplerosis, their export to the cytosol, have been shown to be important for insulin secretion in rodent beta cells. However, human islets may be different. We observed that the enzyme activity, protein level, and relative mRNA level of the key anaplerotic enzyme pyruvate carboxylase (PC) were 80–90% lower in human pancreatic islets compared with islets of rats and mice and the rat insulinoma cell line INS-1 832/13. Activity and protein of ATP citrate lyase, which uses anaplerotic products in the cytosol, were 60–75% lower in human islets than in rodent islets or the cell line. In line with the lower PC, the percentage of glucose-derived pyruvate that entered mitochondrial metabolism via carboxylation in human islets was only 20–30% that in rat islets. This suggests human islets depend less on pyruvate carboxylation than rodent models that were used to establish the role of PC in insulin secretion. Human islets possessed high levels of succinyl-CoA:3-ketoacid-CoA transferase, an enzyme that forms acetoacetate in the mitochondria, and acetoacetyl-CoA synthetase, which uses acetoacetate to form acyl-CoAs in the cytosol. Glucose-stimulated human islets released insulin similarly to rat islets but formed much more acetoacetate. β-Hydroxybutyrate augmented insulin secretion in human islets. This information supports previous data that indicate beta cells can use a pathway involving succinyl-CoA:3-ketoacid-CoA transferase and acetoacetyl-CoA synthetase to synthesize and use acetoacetate and suggests human islets may use this pathway more than PC and citrate to form cytosolic acyl-CoAs.
Journal of Biological Chemistry | 2009
Laura J. Brown; Melissa J. Longacre; Noaman Hasan; Mindy A. Kendrick; Scott W. Stoker; Michael J. MacDonald
The cytosolic malic enzyme (ME1) has been suggested to augment insulin secretion via the malate-pyruvate and/or citrate-pyruvate shuttles, through the production of NADPH or other metabolites. We used selectable vectors expressing short hairpin RNA (shRNA) to stably decrease Me1 mRNA levels by 80–86% and ME1 enzyme activity by 78–86% with either of two shRNAs in the INS-1 832/13 insulinoma cell line. Contrary to published short term ME1 knockdown experiments, our long term targeted cells showed normal insulin secretion in response to glucose or to glutamine plus 2-aminobicyclo[2,2,1]heptane-2-carboxylic acid. We found no increase in the mRNAs and enzyme activities of the cytosolic isocitrate dehydrogenase or glucose-6-phosphate dehydrogenase, which also produce cytosolic NADPH. There was no compensatory induction of the mRNAs for the mitochondrial malic enzymes Me2 or Me3. Interferon pathway genes induced in preliminary small interfering RNA experiments were not induced in the long term shRNA experiments. We repeated our study with an improved vector containing Tol2 transposition sequences to produce a higher rate of stable transferents and shortened time to testing, but this did not alter the results. We similarly used stably expressed shRNA to reduce mitochondrial NAD(P)-malic enzyme (Me2) mRNA by up to 95%, with severely decreased ME2 protein and a 90% decrease in enzyme activity. Insulin release to glucose or glutamine plus 2-aminobicyclo[2,2,1]heptane-2-carboxylic acid remained normal. The maintenance of robust insulin secretion after lowering expression of either one of these malic enzymes is consistent with the redundancy of pathways of pyruvate cycling and/or cytosolic NADPH production in insulinoma cells.
Journal of Biological Chemistry | 2015
Michael J. MacDonald; Lacmbouh Ade; James M. Ntambi; Israrul H. Ansari; Scott W. Stoker
Background: Phospholipids in insulin granules were characterized. Results: Phosphatidylserine and phospholipids with unsaturated or short fatty acids were concentrated in granules and increased with glucose stimulation. Conclusion: Phosphatidylserine enhances the interaction between proteins in granules and plasma membranes. Unsaturated and short FA increase the fluidity and curvature of lipid bilayers. Significance: Fusion of granules to PM and insulin exocytosis is enhanced. The lipid composition of insulin secretory granules (ISG) has never previously been thoroughly characterized. We characterized the phospholipid composition of ISG and mitochondria in pancreatic beta cells without and with glucose stimulation. The phospholipid/protein ratios of most phospholipids containing unsaturated fatty acids were higher in ISG than in whole cells and in mitochondria. The concentrations of negatively charged phospholipids, phosphatidylserine, and phosphatidylinositol in ISG were 5-fold higher than in the whole cell. In ISG phosphatidylserine, phosphatidylinositol, phosphatidylethanolamine, and sphingomyelin, fatty acids 12:0 and 14:0 were high, as were phosphatidylserine and phosphatidylinositol containing 18-carbon unsaturated FA. With glucose stimulation, the concentration of many ISG phosphatidylserines and phosphatidylinositols increased; unsaturated fatty acids in phosphatidylserine increased; and most phosphatidylethanolamines, phosphatidylcholines, sphingomyelins, and lysophosphatidylcholines were unchanged. Unsaturation and shorter fatty acid length in phospholipids facilitate curvature and fluidity of membranes, which favors fusion of membranes. Recent evidence suggests that negatively charged phospholipids, such as phosphatidylserine, act as coupling factors enhancing the interaction of positively charged regions in SNARE proteins in synaptic or secretory vesicle membrane lipid bilayers with positively charged regions in SNARE proteins in the plasma membrane lipid bilayer to facilitate docking of vesicles to the plasma membrane during exocytosis. The results indicate that ISG phospholipids are in a dynamic state and are consistent with the idea that changes in ISG phospholipids facilitate fusion of ISG with the plasma membrane-enhancing glucose-stimulated insulin exocytosis.
Biochimica et Biophysica Acta | 2013
Michael J. MacDonald; Laura J. Brown; Melissa J. Longacre; Scott W. Stoker; Mindy A. Kendrick
BACKGROUND There are three isocitrate dehydrogenases (IDHs) in the pancreatic insulin cell; IDH1 (cytosolic) and IDH2 (mitochondrial) use NADP(H). IDH3 is mitochondrial, uses NAD(H) and was believed to be the IDH that supports the citric acid cycle. METHODS With shRNAs targeting mRNAs for these enzymes we generated cell lines from INS-1 832/13 cells with severe (80%-90%) knockdown of the mitochondrial IDHs separately and together in the same cell line. RESULTS With knockdown of both mitochondrial IDHs mRNA, enzyme activity and protein level, (but not with knockdown of only one mitochondrial IDH) glucose- and BCH (an allosteric activator of glutamate dehydrogenase)-plus-glutamine-stimulated insulin release were inhibited. Cellular levels of citrate, α-ketoglutarate, malate and ATP were altered in patterns consistent with blockage at the mitochondrial IDH reactions. We were able to generate only 50% knockdown of Idh1 mRNA in multiple cell lines (without inhibition of insulin release) possibly because greater knockdown of IDH1 was not compatible with cell line survival. CONCLUSIONS The mitochondrial IDHs are redundant for insulin secretion. When both enzymes are severely knocked down, their low activities (possibly assisted by transport of IDH products and other metabolic intermediates from the cytosol into mitochondria) are sufficient for cell growth, but inadequate for insulin secretion when the requirement for intermediates is certainly more rapid. The results also indicate that IDH2 can support the citric acid cycle. GENERAL SIGNIFICANCE As almost all mammalian cells possess substantial amounts of all three IDH enzymes, the biological principles suggested by these results are probably extrapolatable to many tissues.
Molecular and Cellular Biochemistry | 2008
Michael J. MacDonald; Scott W. Stoker; Noaman Hasan
Methyl succinate (MS) and α-ketoisocaproate (KIC) when applied alone to cultured pancreatic islets or INS-1 832/13 cells do not stimulate insulin release. However, when the two metabolites are combined together they strongly stimulate insulin release. Studying the possible explanations for this complementarity has provided clues to the pathways involved in insulin secretion. MS increased carbon incorporation of KIC into acid-precipitable material and lipid in INS-1 cells. In isolated mitochondria, MS alone increased malate, but MS plus KIC increased citrate, α-ketoglutarate, and isocitrate. These data and the known pathways of their metabolism suggest that MS supplies the oxaloacetate component of citrate and KIC supplies the acetate component of citrate. Other citric acid cycle intermediates can be formed from citrate enabling anaplerosis to supply precursors for extramitochondrial pathways. In addition, KIC, glucose and pyruvate can be metabolized to acetoacetate. In an INS-1 cell line deficient in ATP citrate lyase, incorporation of carbon from pyruvate into acid-precipitable material and lipid was not lowered. This negative result is in agreement with our recent discovery that citrate is not the only carrier of acyl groups from the mitochondria to the cytosol in the beta cell and that acetoacetate can also transfer acyl carbon to the cytosol.
Molecular Endocrinology | 2015
Noaman Hasan; Melissa J. Longacre; Scott W. Stoker; Mindy A. Kendrick; Michael J. MacDonald
Pancreatic β-cells with severely knocked down cytosolic malic enzyme (ME1) and mitochondrial NAD(P) malic enzyme (ME2) show normal insulin secretion. The mitochondrial NADP malic enzyme (ME3) is very low in pancreatic β-cells, and ME3 was previously thought unimportant for insulin secretion. Using short hairpin RNAs that targeted one or more malic enzyme mRNAs in the same cell, we generated more than 25 stable INS-1 832/13-derived insulin cell lines expressing extremely low levels of ME1, ME2, and ME3 alone or low levels of two of these enzymes in the same cell line. We also used double targeting of the same Me gene to achieve even more severe reduction in Me1 and Me2 mRNAs and enzyme activities than we reported previously. Knockdown of ME3, but not ME1 or ME2 alone or together, inhibited insulin release stimulated by glucose, pyruvate or 2-aminobicyclo [2,2,1]heptane-2-carboxylic acid-plus-glutamine. The data suggest that ME3, far more than ME1 or ME2, is necessary for insulin release. Because ME3 enzyme activity is low in β-cells, its role in insulin secretion may involve a function other than its ME catalytic activity.
Journal of Biological Chemistry | 2015
Israrul H. Ansari; Melissa J. Longacre; Coen C. Paulusma; Scott W. Stoker; Mindy A. Kendrick; Michael J. MacDonald
Background: Flippases translocate phosphatidylserine (PS) across lipid bilayers in secretory granules (SG) and plasma membranes (PM). Results: Flippases were characterized in pancreatic beta cells, including in SG. Flippase knockdown inhibited insulin secretion. Conclusion: Flippases play key roles in insulin secretion by rapidly moving PS across lipid bilayers. Significance: PS couples fusion of SG with the PM to promote insulin exocytosis. The negative charge of phosphatidylserine in lipid bilayers of secretory vesicles and plasma membranes couples the domains of positively charged amino acids of secretory vesicle SNARE proteins with similar domains of plasma membrane SNARE proteins enhancing fusion of the two membranes to promote exocytosis of the vesicle contents of secretory cells. Our recent study of insulin secretory granules (ISG) (MacDonald, M. J., Ade, L., Ntambi, J. M., Ansari, I. H., and Stoker, S. W. (2015) Characterization of phospholipids in insulin secretory granules in pancreatic beta cells and their changes with glucose stimulation. J. Biol. Chem. 290, 11075–11092) suggested that phosphatidylserine and other phospholipids, such as phosphatidylethanolamine, in ISG could play important roles in docking and fusion of ISG to the plasma membrane in the pancreatic beta cell during insulin exocytosis. P4 ATPase flippases translocate primarily phosphatidylserine and, to a lesser extent, phosphatidylethanolamine across the lipid bilayers of intracellular vesicles and plasma membranes to the cytosolic leaflets of these membranes. CDC50A is a protein that forms a heterodimer with P4 ATPases to enhance their translocase catalytic activity. We found that the predominant P4 ATPases in pure pancreatic beta cells and human and rat pancreatic islets were ATP8B1, ATP8B2, and ATP9A. ATP8B1 and CDC50A were highly concentrated in ISG. ATP9A was concentrated in plasma membrane. Gene silencing of individual P4 ATPases and CDC50A inhibited glucose-stimulated insulin release in pure beta cells and in human pancreatic islets. This is the first characterization of P4 ATPases in beta cells. The results support roles for P4 ATPases in translocating phosphatidylserine to the cytosolic leaflets of ISG and the plasma membrane to facilitate the docking and fusion of ISG to the plasma membrane during insulin exocytosis.
Diabetes | 2016
Michael J. MacDonald; Noaman Hasan; Israrul H. Ansari; Melissa J. Longacre; Mindy A. Kendrick; Scott W. Stoker
A mechanistic cause for Mauriac syndrome, a syndrome of growth failure and delayed puberty associated with massive liver enlargement from glycogen deposition in children with poorly controlled type 1 diabetes, is unknown. We discovered a mutation in the catalytic subunit of liver glycogen phosphorylase kinase in a patient with Mauriac syndrome whose liver extended into his pelvis. Glycogen phosphorylase kinase activates glycogen phosphorylase, the enzyme that catalyzes the first step in glycogen breakdown. We show that the mutant subunit acts in a dominant manner to completely inhibit glycogen phosphorylase kinase enzyme activity and that this interferes with glycogenolysis causing increased levels of glycogen in human liver cells. It is known that even normal blood glucose levels physiologically inhibit glycogen phosphorylase to diminish glucose release from the liver when glycogenolysis is not needed. The patient’s mother possessed the same mutant glycogen phosphorylase kinase subunit, but did not have diabetes or hepatomegaly. His father had childhood type 1 diabetes in poor glycemic control, but lacked the mutation and had neither hepatomegaly nor growth failure. This case proves that the effect of a mutant enzyme of glycogen metabolism can combine with hyperglycemia to directly hyperinhibit glycogen phosphorylase, in turn blocking glycogenolysis causing the massive liver in Mauriac disease.