Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Se Won Yi is active.

Publication


Featured researches published by Se Won Yi.


Biomaterials | 2016

Sunflower-type nanogels carrying a quantum dot nanoprobe for both superior gene delivery efficacy and tracing of human mesenchymal stem cells.

Ji Sun Park; Se Won Yi; Hye Jin Kim; Seong Min Kim; Sung Han Shim; Keun-Hong Park

Sunflower-type nanogels carrying the QD 655 nanoprobe can be used for both gene transfection and bioimaging of hMSCs. The entry of sunflower-type nanogels into hMSCs can be possibly controlled by changing the formation of QDs. The physico-chemical properties of sunflower-type nanogels internalized by hMSCs were confirmed by AFM, SEM, TEM, gel retardation, and ζ-potential analyses. The bioimaging capacity was confirmed by confocal laser microscopy, Kodak imaging, and Xenogen imaging. Specifically, we investigated the cytotoxicity of sunflower-type nanogels via SNP analysis. Internalization of sunflower-type nanogels does not cause malfunction of hMSCs.


Carbohydrate Polymers | 2016

Receptor-mediated gene delivery into human mesenchymal stem cells using hyaluronic acid-shielded polyethylenimine/pDNA nanogels

Ji Sun Park; Se Won Yi; Hye Jin Kim; Keun-Hong Park

Polyethylenimine (PEI) has been used as a vehicle to deliver genes to cancer cells and somatic cells. In this study, cationic polymers of PEI were shielded with anionic polymers of hyaluronic acid (HA) to safely and effectively deliver genes into human mesenchymal stem cells (hMSCs). HA interacted with CD44 in the plasma membranes of hMSCs to facilitate the internalization of HA-shielded PEI/pDNA complexes. The HA-shielded PEI/pDNA nanogels were confirmed by size changes, ζ-potential, and gel retardation assays. HA-shielded nanogels were easily internalized by hMSCs, and this was reduced by pretreatment with a specific monoclonal antibody that blocked CD44. By shielding PEI/pDNA complexes with HA, nanogels were easily internalized to hMSCs when it did not blocked by anti-CD44. These shielded nanogels were also easily internalized by HeLa cells, and this was reduced by pretreatment with an anti-CD44 monoclonal antibody. Following internalization of the SOX9 gene, chondrogenesis of hMSCs was increased, as determined by RT-PCR, real-time quantitative PCR, and histological analyses.


ACS Applied Materials & Interfaces | 2017

Construction of PLGA Nanoparticles Coated with Polycistronic SOX5, SOX6, and SOX9 Genes for Chondrogenesis of Human Mesenchymal Stem Cells

Ji Sun Park; Se Won Yi; Hye Jin Kim; Seong Min Kim; Jae-Hwan Kim; Keun-Hong Park

Transfection of a cocktail of genes into cells has recently attracted attraction in stem cell differentiation. However, it is not easy to control the transfection rate of each gene. To control and regulate gene delivery into human mesenchymal stem cells (hMSCs), we employed multicistronic genes coupled with a nonviral gene carrier system for stem cell differentiation. Three genes, SOX5, SOX6, and SOX9, were successfully fabricated in a single plasmid. This multicistronic plasmid was complexed with the polycationic polymer polyethylenimine, and poly(lactic-co-glycolic) acid (PLGA) nanoparticles were coated with this complex. The uptake of PLGA nanoparticles complexed with the multicistronic plasmid was tested first. Thereafter, transfection of SOX5, SOX6, and SOX9 was evaluated, which increased the potential for chondrogenesis of hMSCs. The expression of specific genes triggered by transfection of SOX5, SOX6, and SOX9 was tested by RT-PCR and real-time qPCR. Furthermore, specific proteins related to chondrocytes were investigated by a glycosaminoglycan/DNA assay, Western blotting, histological analyses, and immunofluorescence staining. These methods demonstrated that chondrogenesis of hMSCs treated with PLGA nanoparticles carrying this multicistronic genes was better than that of hMSCs treated with other carriers. Furthermore, the multicistronic genes complexed with PLGA nanoparticles were more simple than that of each single gene complexation with PLGA nanoparticles. Multicistronic genes showed more chondrogenic differentiation than each single gene transfection methods.


Biomedical Materials | 2016

Stem cell differentiation-related protein-loaded PLGA microspheres as a novel platform micro-typed scaffold for chondrogenesis.

Ji Sun Park; Hye-Jin Lim; Se Won Yi; Keun-Hong Park

During cell differentiation for tissue regeneration, several factors, including growth factors and proteins, influence cascades in stem cells such as embryonic stem cells and mesenchymal stem cells (MSCs). In this study, transforming growth factor (TGF)-β3 and SOX9, which is an important protein in chondrocytes, were used to generate mature chondrocytes from human MSCs (hMSCs). For safe and effective delivery of bioactive molecules into hMSCs, biodegradable poly-(d,l-lactide-co-glycolide) (PLGA) microspheres (MSs) were coated with TGF-β3 and loaded with SOX9. Instead of SOX9 protein, release of the model protein FITC-bovine serum albumin (BSA) from PLGA MS was evaluated in vitro and in vivo by confocal laser microscopy and Kodak imaging. The bioactivities of TGF-β3 and SOX9 were evaluated by assessing α-helical formation using circular dichroism. PLGA MS loaded with FITC-BSA easily entered hMSCs without causing cytotoxicity. To confirm that internalization of PLGA MSs harboring TGF-β3 and SOX9 induced chondrogenesis of hMSCs, we performed several molecular analyses. By analysis, the specific marker gene expression levels in hMSCs adhered onto PLGA MSs coated with TGF-β3 and loaded with SOX9 were more than 3-5 times that of the control group both in vitro and in vivo. This result revealed that PLGA MS uptake and subsequent release of SOX9 induced chondrogenesis of hMSCs was enhanced by coating PLGA MSs with TGF-β3.


Macromolecular Bioscience | 2015

Neurogenesis Is Induced by Electrical Stimulation of Human Mesenchymal Stem Cells Co-Cultured With Mature Neuronal Cells

Sang Jun Park; Ji Sun Park; Han Na Yang; Se Won Yi; Chun-Ho Kim; Keun-Hong Park

For electrical stimulation of hMSCs, gold nanoparticles were coated onto polyethyleneimine coated glass cover slips. The effects of pulsed or constant electrical stimulation upon cytotoxicity and differentiation of hMSCs were examined. The effects of co culturing hMSCs with neuronal cells were also tested. The neuronal differentiation of the stem cells was evaluated by determining the expression of neuron-specific genes and proteins using RT-PCR and Western blotting. Morphological changes were evaluated by scanning electron microscopy. The hMSCs co-cultured with mature neuronal cells and stimulated with electrical shock showed the greatest level of neurite outgrowth (>150 mm) and smaller cell body sizes.


Scientific Reports | 2018

Sequential transfection of RUNX2/SP7 and ATF4 coated onto dexamethasone-loaded nanospheresenhances osteogenesis.

Hye Jin Kim; Ji Sun Park; Se Won Yi; Hyun Jyung Oh; Jae-Hwan Kim; Keun-Hong Park

The timing of gene transfection greatly influences stem cell differentiation. Sequential transfection is crucial for regulation of cell behavior. When transfected several days after differentiation initiation, genes expressed at the late stage of differentiation can regulate cell behaviors and functions. To determine the optimal timing of key gene delivery, we sequentially transfected human mesenchymal stem cells (hMSCs). This method can easily control osteogenesis of stem cells. hMSCs were first transfected with RUNX2 and SP7 using poly(lactic-co-glycolic acid) nanoparticles to induce osteogenesis, and then with ATF4 after 5, 7, and 14 days. Prior to transfecting hMSCs with all three genes, each gene was individually transfected and its expression was monitored. Transfection of these genes was confirmed by RT-PCR, Western blotting, and confocal microscopy. The pDNAs entered the nuclei of hMSCs, and RUNX2 and SP7 proteins were translated and triggered osteogenesis. Second, the ATF4 gene was delivered when cells were at the pre-osteoblasts stage. To induce the osteogenesis of hMSCs, the optimal timing of ATF4 gene delivery was 14 days after RUNX2/SP7 transfection. Experiments in 2- and 3-dimensional culture systems confirmed that transfection of ATF4 at 14 days after RUNX2/SP7 promoted osteogenic differentiation of hMSCs.


Biomaterials | 2018

Transfection of gene regulation nanoparticles complexed with pDNA and shRNA controls multilineage differentiation of hMSCs

Hye Jin Kim; Se Won Yi; Hyun Jyung Oh; Jung Sun Lee; Ji Sun Park; Keun-Hong Park

Overexpression and knockdown of specific proteins can control stem cell differentiation for therapeutic purposes. In this study, we fabricated RUNX2, SOX9, and C/EBPα plasmid DNAs (pDNAs) and ATF4-targeting shRNA (shATF4) to induce osteogenesis, chondrogenesis, and adipogenesis of human mesenchymal stem cells (hMSCs). The pDNAs and shATF4 were complexed with TRITC-gene regulation nanoparticles (GRN). Osteogenesis-related gene expression was reduced at early (12 h) and late (36 h) time points after co-delivery of shATF4 and SOX9 or C/EBPα pDNA, respectively, and osteogenesis was inhibited in these hMSCs. By contrast, osteogenesis-related genes were highly expressed upon co-delivery of RUNX2 and ATF4 pDNAs. DEX in GRN enhanced chondrogenic differentiation. Expression of osteogenesis-, chondrogenesis-, and adipogenesis-related genes was higher in hMSCs transfected with NPs complexed with RUNX2 and ATF4 pDNAs, shATF4 and SOX9 pDNA, and shATF4 and C/EBPα pDNA for 72 h than in control hMSCs, respectively. Moreover, delivery of these NPs also increased expression of osteogenesis-, chondrogenesis-, and adipogenesis-related proteins. These alterations in expression led to morphological changes, indicating that hMSCs differentiated into osteoblasts, chondrocytes, and adipose cells.


Biomaterials | 2018

PLGA nanoparticles with multiple modes are a biologically safe nanocarrier for mammalian development and their offspring

Yeon Sun Kim; Ji Sun Park; Mira Park; Min Yeon Ko; Se Won Yi; Jung Ah Yoon; SeungChel Yang; Sung Han Shim; Keun-Hong Park; Haengseok Song

Nano-sized particles (NPs) of various materials have been extensively used as therapeutic and diagnostic agents, drug delivery systems, and biomedical devices. However, the biological impacts of NP exposure during early embryogenesis on following development and next generations have not been investigated. Here, we demonstrated that polylactic-co-glycolic acid (PLGA)-NPs were not toxic and did not perturb development of preimplantation mouse embryos in vitro. Moreover, subsequent fetal development in vivo after embryo transfer proceeded normally and healthy pups were born without any genetic aberrations, suggesting biosafety of PLGA-NPs during developmental processes. TRITC-labeled PLGA-NPs, named TRITC nano-tracer (TnT) were used to visualize the successful delivery of the NPs into sperms, oocytes and early embryos. Various molecular markers for early embryogenesis demonstrated that TnT treatment at various developmental stages did not compromise embryo development to the blastocyst. mRNA-Seq analyses reinforced that TnT treatment did not significantly affect mRNA landscapes of blastocysts which undergo embryo implantation critical for following developmental processes. Moreover, when 2-cell embryos exposed to TnT were transferred into pseudopregnant recipients, healthy offspring were born without any distinct morphologic and chromosomal abnormalities. TnT treatment did not affect the sex ratio of the exposed embryos after birth. When mated with male mice, female mice that were exposed to TnT during early embryogenesis produced a comparable number of pups as control females. Furthermore, the phenotypes of the offspring of mice experienced TnT at their early life clearly demonstrated that TnT did not elicit any negative transgenerational effects on mammalian development.


Biomaterials | 2014

Co-delivery of Cbfa-1-targeting siRNA and SOX9 protein using PLGA nanoparticles to induce chondrogenesis of human mesenchymal stem cells.

Su Yeon Jeon; Ji Sun Park; Han Na Yang; Hye Jin Lim; Se Won Yi; Hansoo Park; Keun-Hong Park


Biomaterials | 2016

Neoangiogenesis of human mesenchymal stem cells transfected with peptide-loaded and gene-coated PLGA nanoparticles.

Ji Sun Park; Han Na Yang; Se Won Yi; Jae-Hwan Kim; Keun-Hong Park

Collaboration


Dive into the Se Won Yi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge