Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sean B. Joseph is active.

Publication


Featured researches published by Sean B. Joseph.


Nature Medicine | 2003

Reciprocal regulation of inflammation and lipid metabolism by liver X receptors

Peter Tontonoz; Sean B. Joseph; Antonio Castrillo

Macrophages have important roles in both lipid metabolism and inflammation and are central to the pathogenesis of atherosclerosis. The liver X receptors (LXRs) are established mediators of lipid-inducible gene expression, but their role in inflammation and immunity is unknown. We demonstrate here that LXRs and their ligands are negative regulators of macrophage inflammatory gene expression. Transcriptional profiling of lipopolysaccharide (LPS)-induced macrophages reveals reciprocal LXR-dependent regulation of genes involved in lipid metabolism and the innate immune response. In vitro, LXR ligands inhibit the expression of inflammatory mediators such as inducible nitric oxide synthase, cyclooxygenase (COX)-2 and interleukin-6 (IL-6) in response to bacterial infection or LPS stimulation. In vivo, LXR agonists reduce inflammation in a model of contact dermatitis and inhibit inflammatory gene expression in the aortas of atherosclerotic mice. These findings identify LXRs as lipid-dependent regulators of inflammatory gene expression that may serve to link lipid metabolism and immune functions in macrophages.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Synthetic LXR ligand inhibits the development of atherosclerosis in mice

Sean B. Joseph; Elaine McKilligin; Liming Pei; Michael A. Watson; Alan R. Collins; Bryan A. Laffitte; Mingyi Chen; Grace Noh; Joanne Goodman; Graham N. Hagger; Jonathan Tran; Tim K. Tippin; Xuping Wang; Aldons J. Lusis; Willa A. Hsueh; Ronald E. Law; Jon L. Collins; Timothy M. Willson; Peter Tontonoz

The nuclear receptors LXRα and LXRβ have been implicated in the control of cholesterol and fatty acid metabolism in multiple cell types. Activation of these receptors stimulates cholesterol efflux in macrophages, promotes bile acid synthesis in liver, and inhibits intestinal cholesterol absorption, actions that would collectively be expected to reduce atherosclerotic risk. However, synthetic LXR ligands have also been shown to induce lipogenesis and hypertriglyceridemia in mice, raising questions as to the net effects of these compounds on the development of cardiovascular disease. We demonstrate here that the nonsteroidal LXR agonist GW3965 has potent antiatherogenic activity in two different murine models. In LDLR−/− mice, GW3965 reduced lesion area by 53% in males and 34% in females. A similar reduction of 47% was observed in male apoE−/− mice. Long-term (12-week) treatment with LXR agonist had differential effects on plasma lipid profiles in LDLR−/− and apoE−/− mice. GW3965 induced expression of ATP-binding cassettes A1 and G1 in modified low-density lipoprotein-loaded macrophages in vitro as well as in the aortas of hyperlipidemic mice, suggesting that direct actions of LXR ligands on vascular gene expression are likely to contribute to their antiatherogenic effects. These observations provide direct evidence for an atheroprotective effect of LXR agonists and support their further evaluation as potential modulators of human cardiovascular disease.


Journal of Biological Chemistry | 2002

Direct and Indirect Mechanisms for Regulation of Fatty Acid Synthase Gene Expression by Liver X Receptors

Sean B. Joseph; Bryan A. Laffitte; Parthive H. Patel; Michael A. Watson; Karen E. Matsukuma; Robert Walczak; Jon L. Collins; Timothy F. Osborne; Peter Tontonoz

The nuclear receptors LXRα and LXRβ have been implicated in the control of lipogenesis and cholesterol homeostasis. Ligand activation of these receptors in vivoinduces expression of the LXR target gene SREBP-1cand increases plasma triglyceride levels. Expression of fatty acid synthase (FAS), a central enzyme in de novo lipogenesis and an established target of the SREBP-1 pathway, is also induced by LXR ligands. The effects of LXR ligands on FAS expression have been proposed to be entirely secondary to the induction of SREBP-1c. We demonstrate here that LXRs regulate FAS expression through direct interaction with the FAS promoter as well as through activation of SREBP-1c expression. Induction of FAS expression in HepG2 cells by LXR ligands is reduced, but not abolished, under conditions where SREBP processing is suppressed. Moreover, LXR ligands induce FAS expression in CHO-7 cells without altering expression of SREBP-1. We demonstrate that in addition to tandem SREBP sites, the FASpromoter contains a high affinity binding site for the LXR/RXR heterodimer that is conserved in diverse animal species including birds, rodents, and humans. The LXR and SREBP binding sites independently confer LXR responsiveness on the FASpromoter, and maximal induction requires both transcription factors. Transient elevation of plasma triglyceride levels in mice treated with a synthetic LXR agonist correlates with transient induction of hepatic FAS expression. These results indicate that the LXR signaling pathway modulates FAS expression through distinct but complementary mechanisms and suggest that the FAS gene may be a critical target in the control of lipogenesis by LXRs.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Activation of liver X receptor improves glucose tolerance through coordinate regulation of glucose metabolism in liver and adipose tissue

Bryan A. Laffitte; Lily C. Chao; Jing Li; Robert Walczak; Sarah Hummasti; Sean B. Joseph; Antonio Castrillo; Damien C. Wilpitz; David J. Mangelsdorf; Jon L. Collins; Enrique Saez; Peter Tontonoz

The control of lipid and glucose metabolism is closely linked. The nuclear receptors liver X receptor (LXR)α and LXRβ have been implicated in gene expression linked to lipid homeostasis; however, their role in glucose metabolism is not clear. We demonstrate here that the synthetic LXR agonist GW3965 improves glucose tolerance in a murine model of diet-induced obesity and insulin resistance. Analysis of gene expression in LXR agonist-treated mice reveals coordinate regulation of genes involved in glucose metabolism in liver and adipose tissue. In the liver, activation of LXR led to the suppression of the gluconeogenic program including down-regulation of peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1), phosphoenolpyruvate carboxykinase (PEPCK), and glucose-6-phosphatase expression. Inhibition of gluconeogenic genes was accompanied by an induction in expression of glucokinase, which promotes hepatic glucose utilization. In adipose tissue, activation of LXR led to the transcriptional induction of the insulin-sensitive glucose transporter, GLUT4. We show that the GLUT4 promoter is a direct transcriptional target for the LXR/retinoid X receptor heterodimer and that the ability of LXR ligands to induce GLUT4 expression is abolished in LXR null cells and animals. Consistent with their effects on GLUT4 expression, LXR agonists promote glucose uptake in 3T3-L1 adipocytes in vitro. Thus, activation of LXR alters the expression of genes in liver and adipose tissue that collectively would be expected to limit hepatic glucose output and improve peripheral glucose uptake. These results outline a role for LXRs in the coordination of lipid and glucose metabolism.


Cell | 2004

LXR-Dependent Gene Expression Is Important for Macrophage Survival and the Innate Immune Response

Sean B. Joseph; Michelle N. Bradley; Antonio Castrillo; Kevin W. Bruhn; Puiying A. Mak; Liming Pei; John B. Hogenesch; Ryan M. O'Connell; Genhong Cheng; Enrique Saez; Jeffery F. Miller; Peter Tontonoz

The liver X receptors (LXRs) are nuclear receptors with established roles in the regulation of lipid metabolism. We now show that LXR signaling not only regulates macrophage cholesterol metabolism but also impacts antimicrobial responses. Mice lacking LXRs are highly susceptible to infection with the intracellular bacteria Listeria monocytogenes (LM). Bone marrow transplant studies point to altered macrophage function as the major determinant of susceptibility. LXR-null macrophages undergo accelerated apoptosis when challenged with LM and exhibit defective bacterial clearance in vivo. These defects result, at least in part, from loss of regulation of the antiapoptotic factor SPalpha, a direct target for regulation by LXRalpha. Expression of LXRalpha or SPalpha in macrophages inhibits apoptosis in the setting of LM infection. Our results demonstrate that LXR-dependent gene expression plays an unexpected role in innate immunity and suggest that common nuclear receptor pathways mediate macrophage responses to modified lipoproteins and intracellular pathogens.


Cell | 2008

LXR signaling couples sterol metabolism to proliferation in the acquired immune response

Steven J. Bensinger; Michelle N. Bradley; Sean B. Joseph; Noam Zelcer; Edith M. Janssen; Mary Ann Hausner; Roger Shih; John S. Parks; Peter A. Edwards; Beth D. Jamieson; Peter Tontonoz

Cholesterol is essential for membrane synthesis; however, the mechanisms that link cellular lipid metabolism to proliferation are incompletely understood. We demonstrate here that cellular cholesterol levels in dividing T cells are maintained in part through reciprocal regulation of the LXR and SREBP transcriptional programs. T cell activation triggers induction of the oxysterol-metabolizing enzyme SULT2B1, consequent suppression of the LXR pathway for cholesterol transport, and promotion of the SREBP pathway for cholesterol synthesis. Ligation of LXR during T cell activation inhibits mitogen-driven expansion, whereas loss of LXRbeta confers a proliferative advantage. Inactivation of the sterol transporter ABCG1 uncouples LXR signaling from proliferation, directly linking sterol homeostasis to the antiproliferative action of LXR. Mice lacking LXRbeta exhibit lymphoid hyperplasia and enhanced responses to antigenic challenge, indicating that proper regulation of LXR-dependent sterol metabolism is important for immune responses. These results implicate LXR signaling in a metabolic checkpoint that modulates cell proliferation and immunity.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Identification of macrophage liver X receptors as inhibitors of atherosclerosis

Rajendra K. Tangirala; Eric D. Bischoff; Sean B. Joseph; Brandee L. Wagner; Robert Walczak; Bryan A. Laffitte; Chris L. Daige; Diane Thomas; Richard A. Heyman; David J. Mangelsdorf; Xuping Wang; Aldons J. Lusis; Peter Tontonoz; Ira G. Schulman

Recent studies have identified the liver X receptors (LXRα and LXRβ) as important regulators of cholesterol metabolism and transport. LXRs control transcription of genes critical to a range of biological functions including regulation of high density lipoprotein cholesterol metabolism, hepatic cholesterol catabolism, and intestinal sterol absorption. Although LXR activity has been proposed to be critical for physiologic lipid metabolism and transport, direct evidence linking LXR signaling pathways to the pathogenesis of cardiovascular disease has yet to be established. In this study bone marrow transplantations were used to selectively eliminate macrophage LXR expression in the context of murine models of atherosclerosis. Our results demonstrate that LXRs are endogenous inhibitors of atherogenesis. Additionally, elimination of LXR activity in bone marrow-derived cells mimics many aspects of Tangier disease, a human high density lipoprotein deficiency, including aberrant regulation of cholesterol transporter expression, lipid accumulation in macrophages, splenomegaly, and increased atherosclerosis. These results identify LXRs as targets for intervention in cardiovascular disease.


Molecular Cell | 2003

Crosstalk between LXR and Toll-like Receptor Signaling Mediates Bacterial and Viral Antagonism of Cholesterol Metabolism

Antonio Castrillo; Sean B. Joseph; Sagar A. Vaidya; Margaret E. Haberland; Alan M. Fogelman; Genhong Cheng; Peter Tontonoz

The liver X receptors (LXR) alpha and beta are regulators of cholesterol metabolism and determinants of atherosclerosis susceptibility. Viral and bacterial pathogens have long been suspected to be modulators of atherogenesis; however, mechanisms linking innate immunity to cholesterol metabolism are poorly defined. We demonstrate here that pathogens interfere with macrophage cholesterol metabolism through inhibition of the LXR signaling pathway. Activation of Toll-like receptors (TLR) 3 and 4 by microbial ligands blocks the induction of LXR target genes including ABCA1 in cultured macrophages as well as in aortic tissue in vivo. As a consequence of these transcriptional effects, TLR3/4 ligands strongly inhibit cholesterol efflux from macrophages. Crosstalk between LXR and TLR signaling is mediated by IRF3, a specific effector of TLR3/4 that inhibits the transcriptional activity of LXR on its target promoters. These findings highlight a common mechanism whereby bacterial and viral pathogens may modulate macrophage cholesterol metabolism and cardiovascular disease.


Molecular and Cellular Biology | 2001

Autoregulation of the human liver X receptor alpha promoter.

Bryan A. Laffitte; Sean B. Joseph; Robert Walczak; Liming Pei; Damien C. Wilpitz; Jon L. Collins; Peter Tontonoz

ABSTRACT Previous work has implicated the nuclear receptors liver X receptor α (LXRα) and LXRβ in the regulation of macrophage gene expression in response to oxidized lipids. Macrophage lipid loading leads to ligand activation of LXRs and to induction of a pathway for cholesterol efflux involving the LXR target genes ABCA1 andapoE. We demonstrate here that autoregulation of the LXRα gene is an important component of this lipid-inducible efflux pathway in human macrophages. Oxidized low-density lipoprotein, oxysterols, and synthetic LXR ligands induce expression of LXRα mRNA in human monocyte-derived macrophages and human macrophage cell lines but not in murine peritoneal macrophages or cell lines. This is in contrast to peroxisome proliferator-activated receptor γ (PPARγ)-specific ligands, which stimulate LXRα expression in both human and murine macrophages. We further demonstrate that LXR and PPARγ ligands cooperate to induce LXRα expression in human but not murine macrophages. Analysis of the human LXRα promoter led to the identification of multiple LXR response elements. Interestingly, the previously identified PPAR response element (PPRE) in the murine LXRα gene is not conserved in humans; however, a different PPRE is present in the human LXR 5′-flanking region. These results have implications for cholesterol metabolism in human macrophages and its potential to be regulated by synthetic LXR and/or PPARγ ligands. The ability of LXRα to regulate its own promoter is likely to be an integral part of the macrophage physiologic response to lipid loading.


Journal of Clinical Investigation | 2007

Ligand activation of LXRβ reverses atherosclerosis and cellular cholesterol overload in mice lacking LXRα and apoE

Michelle N. Bradley; Cynthia Hong; Mingyi Chen; Sean B. Joseph; Damien C. Wilpitz; Xuping Wang; Aldons J. Lusis; Allan J. Collins; Willa A. Hseuh; Jon L. Collins; Rajendra K. Tangirala; Peter Tontonoz

Liver X receptors (LXRs) α and β are transcriptional regulators of cholesterol homeostasis and potential targets for the development of antiatherosclerosis drugs. However, the specific roles of individual LXR isotypes in atherosclerosis and the pharmacological effects of synthetic agonists remain unclear. Previous work has shown that mice lacking LXRα accumulate cholesterol in the liver but not in peripheral tissues. In striking contrast, we demonstrate here that LXRα–/–apoE–/– mice exhibit extreme cholesterol accumulation in peripheral tissues, a dramatic increase in whole-body cholesterol burden, and accelerated atherosclerosis. The phenotype of these mice suggests that the level of LXR pathway activation in macrophages achieved by LXRβ and endogenous ligand is unable to maintain homeostasis in the setting of hypercholesterolemia. Surprisingly, however, a highly efficacious synthetic agonist was able to compensate for the loss of LXRα. Treatment of LXRα–/–apoE–/– mice with synthetic LXR ligand ameliorates the cholesterol overload phenotype and reduces atherosclerosis. These observations indicate that LXRα has an essential role in maintaining peripheral cholesterol homeostasis in the context of hypercholesterolemia and provide in vivo support for drug development strategies targeting LXRβ.

Collaboration


Dive into the Sean B. Joseph's collaboration.

Top Co-Authors

Avatar

Peter Tontonoz

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Antonio Castrillo

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David J. Mangelsdorf

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Robert Walczak

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar

Liming Pei

Salk Institute for Biological Studies

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chuck Trujillo

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge