Sean F. O’Keefe
Virginia Tech
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sean F. O’Keefe.
Journal of Agricultural and Food Chemistry | 2014
Melanie R. Dorenkott; Laura E. Griffin; Katheryn M. Goodrich; Katherine A. Thompson-Witrick; Gabrielle Fundaro; Liyun Ye; Joseph R. Stevens; Mostafa M. Ali; Sean F. O’Keefe; Matthew W. Hulver; Andrew P. Neilson
There is interest in the potential of cocoa flavanols, including monomers and procyanidins, to prevent obesity and type-2 diabetes. Fermentation and processing of cocoa beans influence the qualitative and quantitative profiles of individual cocoa constituents. Little is known regarding how different cocoa flavanols contribute to inhibition of obesity and type-2 diabetes. The objective of this study was to compare the impacts of long-term dietary exposure to cocoa flavanol monomers, oligomers, and polymers on the effects of high-fat feeding. Mice were fed a high-fat diet supplemented with either a cocoa flavanol extract or a flavanol fraction enriched with monomeric, oligomeric, or polymeric procyanidins for 12 weeks. The oligomer-rich fraction proved to be most effective in preventing weight gain, fat mass, impaired glucose tolerance, and insulin resistance in this model. This is the first long-term feeding study to examine the relative activities of cocoa constituents on diet-induced obesity and insulin resistance.
Food Chemistry | 2015
Liyun Ye; H. Wang; Susan E. Duncan; William N. Eigel; Sean F. O’Keefe
Antioxidant activities of Ampelopsis grossedentata extract (EXT) and its major component dihydromyricetin (DHM) were analysed and compared with BHA in two model systems, soybean oil and cooked ground beef. Oxidation of soybean oil samples was measured using peroxide value, anisidine value, headspace volatiles and headspace oxygen content. TBARS (thiobarbituric acid reactive substances) test was used to measure the oxidation of cooked beef. DHM was more potent than BHA in preventing soybean oil oxidation. EXT was not as effective as BHA or DHM in soybean oil. In cooked beef, all three antioxidants significantly lowered oxidation compared to control, but there were no differences between the three. Mechanisms and potentials of EXT and DHM as natural food antioxidants need to be studied on a case-by-case basis.
Journal of Nutritional Biochemistry | 2015
Zachary T. Bitzer; Shannon L. Glisan; Melanie R. Dorenkott; Katheryn M. Goodrich; Liyun Ye; Sean F. O’Keefe; Joshua D. Lambert; Andrew P. Neilson
Procyanidins are available in the diet from sources such as cocoa and grapes. Procyanidins are unique in that they are comprised of repeating monomeric units and can exist in various degrees of polymerization. The degree of polymerization plays a role in determining the biological activities of procyanidins. However, generalizations cannot be made regarding the correlation between procyanidin structure and bioactivity because the size-activity relationship appears to be system dependent. Our aim was to screen fractions of procyanidins with differing degrees of polymerization in vitro for anti-inflammatory activities in models of colonic inflammation. Monomeric, oligomeric and polymeric cocoa procyanidin fractions were screened using cell models of disrupted membrane integrity and inflammation in human colon cells. High-molecular-weight polymeric procyanidins were the most effective at preserving membrane integrity and reducing secretion of interleukin-8 in response to inflammatory stimuli. Conversely, oligomeric procyanidins appeared to be the least effective. These results suggest that polymeric cocoa procyanidins may be the most effective for preventing loss of gut barrier function and epithelial inflammation, which are critical steps in the pathogenesis of metabolic endotoxemia, inflammatory bowel disease and colon cancer. Therefore, further investigations of the potential health-protective benefits of cocoa procyanidins with distinct degrees of polymerization, particularly high-molecular-weight procyanidins, are warranted.
Journal of Dairy Science | 2015
D.S. Johnson; Susan E. Duncan; Laurie M. Bianchi; Hao-Hsun Chang; William N. Eigel; Sean F. O’Keefe
The effectiveness of titanium dioxide (TiO2)-loaded high-density polyethylene (HDPE) to reduce light-induced oxidation of extended-shelf-life milk (2% total fat) was studied. The objective was to determine differences over time in sensory quality, vitamin retention, and oxidative chemistry as a function of packaging and retail light exposure duration. Effectiveness of packaging for protecting milk quality was assessed by sensory evaluation (triangle tests, untrained panel), changes in volatile compounds, thiobarbituric reactive substances (TBARS), and riboflavin concentration. Milk (2%) was stored in HDPE packages consisting of TiO2 at 3 levels (low: 0.6%; medium: 1.3%; high: 4.3%) at 3 °C for up to 43 d. Light-protected (translucent, foil-wrapped) and light-exposed (translucent) HDPE packages served as controls. The high TiO2-HDPE package provided protection similar to light-protected control package through d 22 of light exposure, with less consistent performance by the medium TiO2 package. The TBARS increased in all treatments during storage. Under the experimental conditions used, a TBARS value of 1.3mg/L could be considered the limiting sensory threshold for differentiating oxidized milk from light-protected milk. Riboflavin concentration decreased 10.5% in the light-protected control and 28.5% in the high TiO2 packaged milk past 29 d of light exposure, but losses were greater than 40% for all other packages. The high TiO2 package protected riboflavin concentration from degradation and controlled aldehyde concentration throughout the test period.
Journal of Dairy Science | 2012
R.L. Moore; Susan E. Duncan; A.S. Rasor; William N. Eigel; Sean F. O’Keefe
Skim milk, butter-derived aqueous phase, butter oil, and fish oil (3 levels) were used to produce UHT pasteurized n-3 fatty acid-fortified beverages (3.1% fat, 3.9% protein, and 11.5% total solids) with targeted deliveries of 200, 500, and 800 mg of eicosapentaenoic acid and docosahexaenoic acid (combined total) per 250 mL (8 fl oz) serving. Microbial quality, emulsion stability, and oxidation of lipids over 35 d of storage at 4 °C were evaluated. Conjugated diene hydroperoxides were below 1% throughout storage and were found at highest concentrations around d 21 of storage for all formulations. Volatile analysis indicated an increase in 1-penten-3-ol in the n-3 fortified dairy-based beverage systems during storage. Triangle tests were conducted to determine if consumers could detect a difference in aroma, compared with commercially processed aseptically packaged milk. The beverage system with targeted delivery of 500 mg of eicosapentaenoic acid + docosahexaenoic acid per 250-mL serving was not different in aroma compared with commercially available UHT processed milk. This formulation delivered 432 mg of heart-healthy n-3 fatty acids per 250-mL serving on d 35 and was microbiologically and physically stable throughout the 35-d refrigerated storage period.
Journal of Agricultural and Food Chemistry | 2011
Mark Alan Kline; Susan E. Duncan; Laurie M. Bianchi; William N. Eigel; Sean F. O’Keefe
The effect of light on a model colloidal beverage system containing whey protein, lutein, and limonene was investigated. Changes in volatile chemistry were evaluated under accelerated conditions (12 h, 25 °C) at selected wavelengths regions (395, 463, 516, 567, and 610 nm absorbance maxima) using a photochemical reactor. The most damaging wavelengths to lutein stability were UV (200-400 nm) and 463 nm wavelengths. Hexanal formation was highest in the control beverage when exposed to full spectrum light and UV (200-400 nm) wavelengths. Hexanal also was formed in the lutein-fortified beverage under full spectrum light and UV (200-400 nm) wavelengths but to a significantly lesser degree. Limonene degraded significantly under all treatment conditions, with most degradation occurring during full spectrum light exposure. Lutein fortification did not completely protect limonene from degradation.
Journal of Agricultural and Food Chemistry | 2016
Caroline Ryan; Weslie Khoo; Liyun Ye; Joshua D. Lambert; Sean F. O’Keefe; Andrew P. Neilson
Polyphenol profiles and in vitro digestive enzyme inhibitory activities were compared between cocoa extracts from unfermented beans (UB), fermented beans (FB), unfermented liquor (UL), and fermented liquor (FL). Total polyphenols, total flavanols, and individual flavanols were significantly different between UB/FB and UL/FL. All extracts effectively inhibited α-glucosidase (lowest IC50 = 90.0 μg/mL, UL) and moderately inhibited α-amylase (lowest IC50 = 183 μg/mL, FL) and lipase (lowest IC25 = 65.5 μg/mL, FB). Our data suggest that fermentation does not reduce α-glucosidase inhibition, while roasting may enhance inhibition. For α-amylase, both fermentation and roasting improved inhibition. Finally, for lipase, both fermentation and roasting attenuated inhibition. Conclusive correlations between inhibition and mDP, total polyphenol, and flavanol contents were not found. Our data suggest that enzyme inhibition activities of cocoa are not uniformly reduced by polyphenol/flavanol losses during fermentation and roasting. This paradigm-challenging finding suggests other cocoa constituents, potentially formed during processing, contribute to digestive enzyme inhibition.
Journal of Dairy Science | 2013
G.R. Mann; Susan E. Duncan; K.F. Knowlton; A.D. Dietrich; Sean F. O’Keefe
The composition of water given to dairy cattle is often ignored, yet water is a very important nutrient and plays a major role in milk synthesis. The objective of this study was to study effects of elevated levels of iron in bovine drinking water on milk quality. Ferrous lactate treatments corresponding to 0, 2, 5, and 12.5mg/kg drinking water concentrations were delivered through the abomasum at 10 L/d to 4 lactating dairy cows over 4 periods (1 wk infusion/period) in a Latin square design. On d 6 of infusion, milk was collected, processed (homogenized, pasteurized), and analyzed. Mineral content (Fe, Cu, P, Ca) was measured by inductively coupled plasma mass spectrometry. Oxidative stability of whole processed milk was measured by the thiobarbituric acid reactive substances (TBARS) assay for malondialdehyde (MDA) and sensory analysis (triangle test) within 72 h of processing and after 7d of storage (4°C). Significant sensory differences between processed milks from cows receiving iron and the control infusion were observed. No differences in TBARS (1.46±0.04 mg of MDA/kg) or mineral content (0.22±0.01 mg/kg Fe) were observed. A 2-way interaction (iron treatment by cow) for Ca, Cu, and Fe concentrations was seen. While iron added directly to milk causes changes in oxidation of milk, high levels of iron given to cattle have subtle effects that initially may not be obvious.
Journal of Molecular and Genetic Medicine | 2016
Liyun Ye; Andrew P. Neilson; Paul J. Sarnoski; William Keith Ray; Susan E. Duncan; Renee Raiden Boyer; Sean F. O’Keefe
Cranberry products have long been used to treat urinary tract infections. It is believed that the A-type proanthocyanidins in cranberries contribute to this function. Peanut is one of the other, few food sources that primarily contain A-type proanthocyanidins. The skin on the outside of the peanut kernels (testa), which is treated as an agriculture waste product, contains high levels of A-type proanthocyanidins. In this study, an HPLC diol column separation method and MALDI-TOF MS were used to characterize and compare the proanthocyanidin compositions of peanut skins and cranberries. MALDI-TOF MS in linear mode was able to detect a group of proanthocyanidins with DP (degree of polymerization) 10 in peanut skin extract, but was only able to detect DP 8 in cranberry extract. The reflectron mode showed clusters of clear narrow peaks at DP 7 in peanut skin extract, while the highest DP resolved for cranberry extract was only 3 in reflectron mode. This might be due to the low response intensity of the cranberry samples with the current cleanup method and the matrix. Based on the resolved peaks in reflectron mode, pPeanut skins and cranberries have similar proanthocyanidins composition; they contain both A-type and B-type proanthocyanidins, with the A-type being predominant. This result may inspire future studies on the comparison of biological functions between peanut skins and cranberries and further comparison of their polymeric proanthocyanidin composition.
ACS Omega | 2018
Elham Mohammad Zadeh; Sean F. O’Keefe; Young-Teck Kim
Lignin is a byproduct of agricultural industries and only has limited applications. In this study, lignin was investigated for use in sustainable biopolymeric packaging film. Alkali lignin (AL) and lignosulfonate (LSS) were added to enzymatically modified soy protein isolate (SPI) biopolymeric film with different concentrations with the goal of improvement of film physical and functional properties. A radical scavenging activity test revealed that films containing LSS had values 28 and 6% higher than control and AL-based films, respectively; AL itself (not in films) had significantly higher radical scavenging activity than LSS. This indicates the activity of lignin is affected by interaction with SPI. The higher compatibility between LSS and enzymatically modified SPI resulted in a positive effect on surface smoothness, water absorption, and mechanical properties of LSS-based films. Films containing AL showed a high light absorption range in the UV region, and this UV-blocking ability increased with increasing level of lignin. Deconvoluted Fourier transform infrared spectra confirmed that the addition of lignin resulted in some changes in the secondary structure of the protein matrix, which were aligned with X-ray diffraction results. The addition of lignin improved tensile strength (TS) and thermal stability of films compared to the lignin-free control. This improvement in TS and thermal stability was probably a result of new intermolecular interactions between lignin and SPI. Water vapor permeability of the films containing lignin decreased to 50% of the control because lignin played a role as a filler in the matrix. On the basis of our observations, the incorporation of lignin into biopolymeric film is capable of providing additional benefits and solutions to various industries, such as food, packaging, agriculture, and pharmaceuticals.