Sean Kennedy
Institut national de la recherche agronomique
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sean Kennedy.
Nature | 2013
Trine Nielsen; Junjie Qin; Edi Prifti; Falk Hildebrand; Gwen Falony; Mathieu Almeida; Manimozhiyan Arumugam; Jean-Michel Batto; Sean Kennedy; Pierre Leonard; Junhua Li; Kristoffer Sølvsten Burgdorf; Niels Grarup; Torben Jørgensen; Ivan Brandslund; Henrik Bjørn Nielsen; Agnieszka Sierakowska Juncker; Marcelo Bertalan; Florence Levenez; Nicolas Pons; Simon Rasmussen; Shinichi Sunagawa; Julien Tap; Sebastian Tims; Erwin G. Zoetendal; Søren Brunak; Karine Clément; Joël Doré; Michiel Kleerebezem; Karsten Kristiansen
We are facing a global metabolic health crisis provoked by an obesity epidemic. Here we report the human gut microbial composition in a population sample of 123 non-obese and 169 obese Danish individuals. We find two groups of individuals that differ by the number of gut microbial genes and thus gut bacterial richness. They contain known and previously unknown bacterial species at different proportions; individuals with a low bacterial richness (23% of the population) are characterized by more marked overall adiposity, insulin resistance and dyslipidaemia and a more pronounced inflammatory phenotype when compared with high bacterial richness individuals. The obese individuals among the lower bacterial richness group also gain more weight over time. Only a few bacterial species are sufficient to distinguish between individuals with high and low bacterial richness, and even between lean and obese participants. Our classifications based on variation in the gut microbiome identify subsets of individuals in the general white adult population who may be at increased risk of progressing to adiposity-associated co-morbidities.
Nature | 2013
Aurélie Cotillard; Sean Kennedy; Ling Chun Kong; Edi Prifti; Nicolas Pons; Mathieu Almeida; Benoit Quinquis; Florence Levenez; Nathalie Galleron; Sophie Gougis; Salwa Rizkalla; Jean-Michel Batto; Pierre Renault; Joël Doré; Jean-Daniel Zucker; Karine Clément; S D Ehrlich
Complex gene–environment interactions are considered important in the development of obesity. The composition of the gut microbiota can determine the efficacy of energy harvest from food and changes in dietary composition have been associated with changes in the composition of gut microbial populations. The capacity to explore microbiota composition was markedly improved by the development of metagenomic approaches, which have already allowed production of the first human gut microbial gene catalogue and stratifying individuals by their gut genomic profile into different enterotypes, but the analyses were carried out mainly in non-intervention settings. To investigate the temporal relationships between food intake, gut microbiota and metabolic and inflammatory phenotypes, we conducted diet-induced weight-loss and weight-stabilization interventions in a study sample of 38 obese and 11 overweight individuals. Here we report that individuals with reduced microbial gene richness (40%) present more pronounced dys-metabolism and low-grade inflammation, as observed concomitantly in the accompanying paper. Dietary intervention improves low gene richness and clinical phenotypes, but seems to be less efficient for inflammation variables in individuals with lower gene richness. Low gene richness may therefore have predictive potential for the efficacy of intervention.
Nature Biotechnology | 2014
H. Bjørn Nielsen; Mathieu Almeida; Agnieszka Sierakowska Juncker; Simon Rasmussen; Junhua Li; Shinichi Sunagawa; Damian Rafal Plichta; Laurent Gautier; Anders Gorm Pedersen; Eric Pelletier; Ida Bonde; Trine Nielsen; Chaysavanh Manichanh; Manimozhiyan Arumugam; Jean-Michel Batto; Marcelo B Quintanilha dos Santos; Nikolaj Blom; Natalia Borruel; Kristoffer Sølvsten Burgdorf; Fouad Boumezbeur; Francesc Casellas; Joël Doré; Piotr Dworzynski; Francisco Guarner; Torben Hansen; Falk Hildebrand; Rolf Sommer Kaas; Sean Kennedy; Karsten Kristiansen; Jens Roat Kultima
Most current approaches for analyzing metagenomic data rely on comparisons to reference genomes, but the microbial diversity of many environments extends far beyond what is covered by reference databases. De novo segregation of complex metagenomic data into specific biological entities, such as particular bacterial strains or viruses, remains a largely unsolved problem. Here we present a method, based on binning co-abundant genes across a series of metagenomic samples, that enables comprehensive discovery of new microbial organisms, viruses and co-inherited genetic entities and aids assembly of microbial genomes without the need for reference sequences. We demonstrate the method on data from 396 human gut microbiome samples and identify 7,381 co-abundance gene groups (CAGs), including 741 metagenomic species (MGS). We use these to assemble 238 high-quality microbial genomes and identify affiliations between MGS and hundreds of viruses or genetic entities. Our method provides the means for comprehensive profiling of the diversity within complex metagenomic samples.
Scientific Reports | 2015
Patrick Veiga; Nicolas Pons; Anurag Agrawal; Raish Oozeer; Denis Guyonnet; Rémi Brazeilles; Jean Michel Faurie; Johan E. T. van Hylckama Vlieg; Lesley A. Houghton; Peter J. Whorwell; S. Dusko Ehrlich; Sean Kennedy
The gut microbiota (GM) consists of resident commensals and transient microbes conveyed by the diet but little is known about the role of the latter on GM homeostasis. Here we show, by a conjunction of quantitative metagenomics, in silico genome reconstruction and metabolic modeling, that consumption of a fermented milk product containing dairy starters and Bifidobacterium animalis potentiates colonic short chain fatty acids production and decreases abundance of a pathobiont Bilophila wadsworthia compared to a milk product in subjects with irritable bowel syndrome (IBS, n = 28). The GM changes parallel improvement of IBS state, suggesting a role of the fermented milk bacteria in gut homeostasis. Our data challenge the view that microbes ingested with food have little impact on the human GM functioning and rather provide support for beneficial health effects.
PLOS ONE | 2014
Ling Chun Kong; Bridget A. Holmes; Aurélie Cotillard; Fatiha Habi-Rachedi; Rémi Brazeilles; Sophie Gougis; Nicolas Gausserès; Patrice D. Cani; Soraya Fellahi; Jean-Philippe Bastard; Sean Kennedy; Joël Doré; S D Ehrlich; Jean-Daniel Zucker; Salwa Rizkalla; Karine Clément
Background Associations between dietary patterns, metabolic and inflammatory markers and gut microbiota are yet to be elucidated. Objectives We aimed to characterize dietary patterns in overweight and obese subjects and evaluate the different dietary patterns in relation to metabolic and inflammatory variables as well as gut microbiota. Design Dietary patterns, plasma and adipose tissue markers, and gut microbiota were evaluated in a group of 45 overweight and obese subjects (6 men and 39 women). A group of 14 lean subjects were also evaluated as a reference group. Results Three clusters of dietary patterns were identified in overweight/obese subjects. Cluster 1 had the least healthy eating behavior (highest consumption of potatoes, confectionary and sugary drinks, and the lowest consumption of fruits that was associated also with low consumption of yogurt, and water). This dietary pattern was associated with the highest LDL cholesterol, plasma soluble CD14 (p = 0.01) a marker of systemic inflammation but the lowest accumulation of CD163+ macrophages with anti-inflammatory profile in adipose tissue (p = 0.05). Cluster 3 had the healthiest eating behavior (lower consumption of confectionary and sugary drinks, and highest consumption of fruits but also yogurts and soups). Subjects in this Cluster had the lowest inflammatory markers (sCD14) and the highest anti-inflammatory adipose tissue CD163+ macrophages. Dietary intakes, insulin sensitivity and some inflammatory markers (plasma IL6) in Cluster 3 were close to those of lean subjects. Cluster 2 was in-between clusters 1 and 3 in terms of healthfulness. The 7 gut microbiota groups measured by qPCR were similar across the clusters. However, the healthiest dietary cluster had the highest microbial gene richness, as evaluated by quantitative metagenomics. Conclusion A healthier dietary pattern was associated with lower inflammatory markers as well as greater gut microbiota richness in overweight and obese subjects. Trial Registration ClinicalTrials.gov NCT01314690
PLOS ONE | 2015
Eric Dugat-Bony; Cécile Straub; Aurélie Teissandier; Djamila Onesime; Valentin Loux; Christophe Monnet; Françoise Irlinger; Sophie Landaud; Marie Noelle Leclercq-Perlat; Pascal Bento; Sébastien Fraud; Jean-François Gibrat; Julie Aubert; Frédéric Fer; Eric Guédon; Nicolas Pons; Sean Kennedy; Jean Marie Beckerich; Dominique Swennen; Pascal Bonnarme
Cheese ripening is a complex biochemical process driven by microbial communities composed of both eukaryotes and prokaryotes. Surface-ripened cheeses are widely consumed all over the world and are appreciated for their characteristic flavor. Microbial community composition has been studied for a long time on surface-ripened cheeses, but only limited knowledge has been acquired about its in situ metabolic activities. We applied metagenomic, metatranscriptomic and biochemical analyses to an experimental surface-ripened cheese composed of nine microbial species during four weeks of ripening. By combining all of the data, we were able to obtain an overview of the cheese maturation process and to better understand the metabolic activities of the different community members and their possible interactions. Furthermore, differential expression analysis was used to select a set of biomarker genes, providing a valuable tool that can be used to monitor the cheese-making process.
British Journal of Nutrition | 2015
Lena Kirchner Brahe; Edi Prifti; Nicolas Pons; Sean Kennedy; Trine Blædel; Janet Håkansson; Trine Kastrup Dalsgaard; Torben Hansen; Oluf Pedersen; Arne Astrup; S. Dusko Ehrlich; Lesli H. Larsen
The gut microbiota has been implicated in obesity and its progression towards metabolic disease. Dietary interventions that target the gut microbiota have been suggested to improve metabolic health. The aim of the present study was to investigate the effect of interventions with Lactobacillus paracasei F19 or flaxseed mucilage on the gut microbiota and metabolic risk markers in obesity. A total of fifty-eight obese postmenopausal women were randomised to a single-blinded, parallel-group intervention of 6-week duration, with a daily intake of either L. paracasei F19 (9·4 × 1010 colony-forming units), flaxseed mucilage (10 g) or placebo. Quantitative metagenomic analysis of faecal DNA was performed to identify the changes in the gut microbiota. Diet-induced changes in metabolic markers were explored using adjusted linear regression models. The intake of flaxseed mucilage over 6 weeks led to a reduction in serum C-peptide and insulin release during an oral glucose tolerance test (P< 0·05) and improved insulin sensitivity measured by Matsuda index (P< 0·05). Comparison of gut microbiota composition at baseline and after 6 weeks of intervention with flaxseed mucilage showed alterations in abundance of thirty-three metagenomic species (P< 0·01), including decreased relative abundance of eight Faecalibacterium species. These changes in the microbiota could not explain the effect of flaxseed mucilage on insulin sensitivity. The intake of L. paracasei F19 did not modulate metabolic markers compared with placebo. In conclusion, flaxseed mucilage improves insulin sensitivity and alters the gut microbiota; however, the improvement in insulin sensitivity was not mediated by the observed changes in relative abundance of bacterial species.
Proceedings of the National Academy of Sciences of the United States of America | 2016
Juan J. Quereda; Olivier Dussurget; Marie-Anne Nahori; Amine Ghozlane; Stevenn Volant; Marie-Agnès Dillies; Béatrice Regnault; Sean Kennedy; Stanislas Mondot; Barbara Villoing; Pascale Cossart; Javier Pizarro-Cerdá
Significance Listeria monocytogenes is a bacterial pathogen responsible for listeriosis, a foodborne disease characterized by septicemia and abortion in pregnant women. The most severe listeriosis outbreaks are associated with a subset of bacterial epidemic clones, although the underlying virulence mechanisms of these clones remain elusive. Here, we demonstrate, to our knowledge for the first time, that these epidemic strains secrete a bacteriocin specifically in the gut and alter host intestinal microbiota, allowing L. monocytogenes colonization of the intestine and, consequently, invasion of deeper organs. Therefore, our work shows that epidemic listeriosis implicates not only interactions between L. monocytogenes and host cells, but also interactions between L. monocytogenes and the host intestinal microbiota that are critical for the establishment of infection. Listeria monocytogenes is responsible for gastroenteritis in healthy individuals and for a severe invasive disease in immunocompromised patients. Among the three identified L. monocytogenes evolutionary lineages, lineage I strains are overrepresented in epidemic listeriosis outbreaks, but the mechanisms underlying the higher virulence potential of strains of this lineage remain elusive. Here, we demonstrate that Listeriolysin S (LLS), a virulence factor only present in a subset of lineage I strains, is a bacteriocin highly expressed in the intestine of orally infected mice that alters the host intestinal microbiota and promotes intestinal colonization by L. monocytogenes, as well as deeper organ infection. To our knowledge, these results therefore identify LLS as the first bacteriocin described in L. monocytogenes and associate modulation of host microbiota by L. monocytogenes epidemic strains to increased virulence.
Nutrition & Diabetes | 2015
Lena Kirchner Brahe; Edi Prifti; Nicolas Pons; Sean Kennedy; T. Hansen; Oluf Pedersen; Arne Astrup; S D Ehrlich; Lesli H. Larsen
Background:Gut microbial gene richness and specific bacterial species are associated with metabolic risk markers in humans, but the impact of host physiology and dietary habits on the link between the gut microbiota and metabolic markers remain unclear. The objective of this study was to identify gut metagenomic markers associated with estimates of insulin resistance, lipid metabolism and inflammation in obesity, and to explore whether the associations between metagenomic and metabolic markers persisted after adjustment for body fat, age and habitual dietary intake.Methods:Faecal DNA from 53 women with obesity was analysed through quantitative metagenomic sequencing and analysis, and a systematic search was performed for bacterial genes associated with estimates of insulin resistance, inflammation and lipid metabolism. Subsequently, the correlations between metagenomic species and metabolic markers were tested by linear regression models, with and without covariate adjustment.Results:One hundred and fourteen metagenomic species correlated with metabolic markers (P<0.001) including Akkermansia muciniphila, Bilophila wadsworthia, Bifidobacterium longum and Faecalibacterium prausnitzii, but also species not previously associated with metabolic markers including Bacteroides faecis and Dorea longicatena. The majority of the identified correlations between bacterial species and metabolic markers persisted after adjustment for differences in body fat, age and dietary macronutrient composition; however, the negative correlation with insulin resistance observed for B. longum and F. prausnitzii appeared to be modified by the intake of dietary fibre and fat, respectively.Conclusions:This study shows that several gut bacterial species are linked to metabolic risk markers in obesity, also after adjustment for potential confounders, such as long-term diet composition. The study supports the use of gut metagenomic markers for metabolic disease prediction and warrants further investigation of causality.
Science Advances | 2016
Marie-Eve Val; Martial Marbouty; Francisco de Lemos Martins; Sean Kennedy; Harry Kemble; Michael Jason Bland; Christophe Possoz; Romain Koszul; Ole Skovgaard; Didier Mazel
Replication of a specific site on the main chromosome of V. cholerae triggers the replication initiation of its secondary chromosome. Bacteria with multiple chromosomes represent up to 10% of all bacterial species. Unlike eukaryotes, these bacteria use chromosome-specific initiators for their replication. In all cases investigated, the machineries for secondary chromosome replication initiation are of plasmid origin. One of the important differences between plasmids and chromosomes is that the latter replicate during a defined period of the cell cycle, ensuring a single round of replication per cell. Vibrio cholerae carries two circular chromosomes, Chr1 and Chr2, which are replicated in a well-orchestrated manner with the cell cycle and coordinated in such a way that replication termination occurs at the same time. However, the mechanism coordinating this synchrony remains speculative. We investigated this mechanism and revealed that initiation of Chr2 replication is triggered by the replication of a 150-bp locus positioned on Chr1, called crtS. This crtS replication–mediated Chr2 replication initiation mechanism explains how the two chromosomes communicate to coordinate their replication. Our study reveals a new checkpoint control mechanism in bacteria, and highlights possible functional interactions mediated by contacts between two chromosomes, an unprecedented observation in bacteria.