Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sean M. McMahon is active.

Publication


Featured researches published by Sean M. McMahon.


PLOS ONE | 2008

Climate Change and the Future of California's Endemic Flora

Scott R. Loarie; Benjamin E. Carter; Katharine Hayhoe; Sean M. McMahon; Richard L. Moe; Charles A. Knight; David D. Ackerly

The flora of California, a global biodiversity hotspot, includes 2387 endemic plant taxa. With anticipated climate change, we project that up to 66% will experience >80% reductions in range size within a century. These results are comparable with other studies of fewer species or just samples of a regions endemics. Projected reductions depend on the magnitude of future emissions and on the ability of species to disperse from their current locations. Californias varied terrain could cause species to move in very different directions, breaking up present-day floras. However, our projections also identify regions where species undergoing severe range reductions may persist. Protecting these potential future refugia and facilitating species dispersal will be essential to maintain biodiversity in the face of climate change.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Evidence for a recent increase in forest growth

Sean M. McMahon; Geoffrey G. Parker; Dawn R. Miller

Forests and their soils contain the majority of the earth’s terrestrial carbon stocks. Changes in patterns of tree growth can have a huge impact on atmospheric cycles, biogeochemical cycles, climate change, and biodiversity. Recent studies have shown increases in biomass across many forest types. This increase has been attributed to climate change. However, without knowing the disturbance history of a forest, growth could also be caused by normal recovery from unknown disturbances. Using a unique dataset of tree biomass collected over the past 22 years from 55 temperate forest plots with known land-use histories and stand ages ranging from 5 to 250 years, we found that recent biomass accumulation greatly exceeded the expected growth caused by natural recovery. We have also collected over 100 years of local weather measurements and 17 years of on-site atmospheric CO2 measurements that show consistent increases in line with globally observed climate-change patterns. Combined, these observations show that changes in temperature and CO2 that have been observed worldwide can fundamentally alter the rate of critical natural processes, which is predicted by biogeochemical models. Identifying this rate change is important to research on the current state of carbon stocks and the fluxes that influence how carbon moves between storage and the atmosphere. These results signal a pressing need to better understand the changes in growth rates in forest systems, which influence current and future states of the atmosphere and biosphere.


Trends in Ecology and Evolution | 2011

Improving assessment and modelling of climate change impacts on global terrestrial biodiversity

Sean M. McMahon; Sandy P. Harrison; W. Scott Armbruster; Patrick J. Bartlein; Colin M. Beale; Mary E. Edwards; Jens Kattge; Guy Midgley; Xavier Morin; I. Colin Prentice

Understanding how species and ecosystems respond to climate change has become a major focus of ecology and conservation biology. Modelling approaches provide important tools for making future projections, but current models of the climate-biosphere interface remain overly simplistic, undermining the credibility of projections. We identify five ways in which substantial advances could be made in the next few years: (i) improving the accessibility and efficiency of biodiversity monitoring data, (ii) quantifying the main determinants of the sensitivity of species to climate change, (iii) incorporating community dynamics into projections of biodiversity responses, (iv) accounting for the influence of evolutionary processes on the response of species to climate change, and (v) improving the biophysical rule sets that define functional groupings of species in global models.


Ecological Monographs | 2010

High‐dimensional coexistence based on individual variation: a synthesis of evidence

James S. Clark; David E. Bell; Chengjin Chu; Michael C. Dietze; Michelle H. Hersh; Janneke HilleRisLambers; Inés Ibášez; Shannon L. LaDeau; Sean M. McMahon; Jessica Metcalf; Jacqueline E. Mohan; Emily V. Moran; Luke Pangle; Scott Pearson; Carl F. Salk; Zehao Shen; Denis Valle; Peter H. Wyckoff

High biodiversity of forests is not predicted by traditional models, and evidence for trade-offs those models require is limited. High-dimensional regulation (e.g., N factors to regulate N species) has long been recognized as a possible alternative explanation, but it has not be been seriously pursued, because only a few limiting resources are evident for trees, and analysis of multiple interactions is challenging. We develop a hierarchical model that allows us to synthesize data from long-term, experimental, data sets with processes that control growth, maturation, fecundity, and survival. We allow for uncertainty at all stages and variation among 26 000 individuals and over time, including 268 000 tree years, for dozens of tree species. We estimate population-level parameters that apply at the species level and the interactions among latent states, i.e., the demographic rates for each individual, every year. The former show that the traditional trade-offs used to explain diversity are not present. Demographic rates overlap among species, and they do not show trends consistent with maintenance of diversity by simple mechanisms (negative correlations and limiting similarity). However, estimates of latent states at the level of individuals and years demonstrate that species partition environmental variation. Correlations between responses to variation in time are high for individuals of the same species, but not for individuals of different species. We demonstrate that these relationships are pervasive, providing strong evidence that high- dimensional regulation is critical for biodiversity regulation.


Journal of Ecology | 2013

Scale‐dependent relationships between tree species richness and ecosystem function in forests

Ryan A. Chisholm; Helene C. Muller-Landau; Kassim Abdul Rahman; Daniel P. Bebber; Yue Bin; Stephanie A. Bohlman; Norman A. Bourg; Joshua S. Brinks; Sarayudh Bunyavejchewin; Nathalie Butt; Hong-Lin Cao; Min Cao; Dairon Cárdenas; Li-Wan Chang; Jyh-Min Chiang; George B. Chuyong; Richard Condit; H. S. Dattaraja; Stuart J. Davies; Alvaro Duque; Christine Fletcher; Nimal Gunatilleke; Savitri Gunatilleke; Zhanqing Hao; Rhett D. Harrison; Robert W. Howe; Chang-Fu Hsieh; Stephen P. Hubbell; Akira Itoh; David Kenfack

1. The relationship between species richness and ecosystem function, as measured by productivity or biomass, is of long-standing theoretical and practical interest in ecology. This is especially true for forests, which represent a majority of global biomass, productivity and biodiversity.


Methods in Ecology and Evolution | 2014

Advancing population ecology with integral projection models: a practical guide

Cory Merow; Johan P. Dahlgren; C. Jessica E. Metcalf; Dylan Z. Childs; Margaret E. K. Evans; Eelke Jongejans; Sydne Record; Mark Rees; Roberto Salguero-Gómez; Sean M. McMahon

Summary 1. Integral projection models (IPMs) use information on how an individual’s state influences its vital rates – survival, growth and reproduction – to make population projections. IPMs are constructed from regression models predicting vital rates from state variables (e.g. size or age) and covariates (e.g. environment). By combining regressions of vital rates, an IPM provides mechanistic insight into emergent ecological patterns such as population dynamics, species geographic distributions or life-history strategies. 2. Here, we review important resources for building IPMs and provide a comprehensive guide, with extensive R code, for their construction. IPMs can be applied to any stage-structured population; here, we illustrate IPMs for a series of plant life histories of increasing complexity and biological realism, highlighting the utility of various regression methods for capturing biological patterns. We also present case studies illustrating how IPMs can be used to predict species’ geographic distributions and life-history strategies. 3. IPMs can represent a wide range of life histories at any desired level of biological detail. Much of the strength of IPMs lies in the strength of regression models. Many subtleties arise when scaling from vital rate regressions to population-level patterns, so we provide a set of diagnostics and guidelines to ensure that models are biologically plausible. Moreover, IPMs can exploit a large existing suite of analytical tools developed for matrix projection models.


Science | 2017

Plant diversity increases with the strength of negative density dependence at the global scale

Joseph A. LaManna; Scott A. Mangan; Alfonso Alonso; Norman A. Bourg; Warren Y. Brockelman; Sarayudh Bunyavejchewin; Li-Wan Chang; Jyh-Min Chiang; George B. Chuyong; Keith Clay; Richard Condit; Susan Cordell; Stuart J. Davies; Tucker J. Furniss; Christian P. Giardina; I. A. U. Nimal Gunatilleke; C. V. Savitri Gunatilleke; Fangliang He; Robert W. Howe; Stephen P. Hubbell; Chang-Fu Hsieh; Faith M. Inman-Narahari; David Janík; Daniel J. Johnson; David Kenfack; Lisa Korte; Kamil Král; Andrew J. Larson; James A. Lutz; Sean M. McMahon

Maintaining tree diversity Negative interaction among plant species is known as conspecific negative density dependence (CNDD). This ecological pattern is thought to maintain higher species diversity in the tropics. LaManna et al. tested this hypothesis by comparing how tree species diversity changes with the intensity of local biotic interactions in tropical and temperate latitudes (see the Perspective by Comita). Stronger local specialized biotic interactions seem to prevent erosion of biodiversity in tropical forests, not only by limiting populations of common species, but also by strongly stabilizing populations of rare species, which tend to show higher CNDD in the tropics. Science, this issue p. 1389; see also p. 1328 A global analysis of ~3000 species and ~2.4 million trees elucidates variations in tree species diversity between tropical and temperate latitudes. Theory predicts that higher biodiversity in the tropics is maintained by specialized interactions among plants and their natural enemies that result in conspecific negative density dependence (CNDD). By using more than 3000 species and nearly 2.4 million trees across 24 forest plots worldwide, we show that global patterns in tree species diversity reflect not only stronger CNDD at tropical versus temperate latitudes but also a latitudinal shift in the relationship between CNDD and species abundance. CNDD was stronger for rare species at tropical versus temperate latitudes, potentially causing the persistence of greater numbers of rare species in the tropics. Our study reveals fundamental differences in the nature of local-scale biotic interactions that contribute to the maintenance of species diversity across temperate and tropical communities.


Canadian Journal of Forest Research | 2009

Overcoming data sparseness and parametric constraints in modeling of tree mortality: a new nonparametric Bayesian model

C. Jessica E. Metcalf; Sean M. McMahon; James S. Clark

Accurately describing patterns of tree mortality is central to understanding forest dynamics and is important for both management and ecological inference. However, for many tree species, annual su...


Annals of the New York Academy of Sciences | 2009

A predictive framework to understand forest responses to global change.

Sean M. McMahon; Michael C. Dietze; Michelle H. Hersh; Emily V. Moran; James S. Clark

Forests are one of Earths critical biomes. They have been shown to respond strongly to many of the drivers that are predicted to change natural systems over this century, including climate, introduced species, and other anthropogenic influences. Predicting how different tree species might respond to this complex of forces remains a daunting challenge for forest ecologists. Yet shifts in species composition and abundance can radically influence hydrological and atmospheric systems, plant and animal ranges, and human populations, making this challenge an important one to address. Forest ecologists have gathered a great deal of data over the past decades and are now using novel quantitative and computational tools to translate those data into predictions about the fate of forests. Here, after a brief review of the threats to forests over the next century, one of the more promising approaches to making ecological predictions is described: using hierarchical Bayesian methods to model forest demography and simulating future forests from those models. This approach captures complex processes, such as seed dispersal and mortality, and incorporates uncertainty due to unknown mechanisms, data problems, and parameter uncertainty. After describing the approach, an example by simulating drought for a southeastern forest is offered. Finally, there is a discussion of how this approach and others need to be cast within a framework of prediction that strives to answer the important questions posed to environmental scientists, but does so with a respect for the challenges inherent in predicting the future of a complex biological system.


PLOS Computational Biology | 2015

Speeding Up Ecological and Evolutionary Computations in R; Essentials of High Performance Computing for Biologists

Marco D. Visser; Sean M. McMahon; Cory Merow; Philip M. Dixon; Sydne Record; Eelke Jongejans

Computation has become a critical component of research in biology. A risk has emerged that computational and programming challenges may limit research scope, depth, and quality. We review various solutions to common computational efficiency problems in ecological and evolutionary research. Our review pulls together material that is currently scattered across many sources and emphasizes those techniques that are especially effective for typical ecological and environmental problems. We demonstrate how straightforward it can be to write efficient code and implement techniques such as profiling or parallel computing. We supply a newly developed R package (aprof) that helps to identify computational bottlenecks in R code and determine whether optimization can be effective. Our review is complemented by a practical set of examples and detailed Supporting Information material (S1–S3 Texts) that demonstrate large improvements in computational speed (ranging from 10.5 times to 14,000 times faster). By improving computational efficiency, biologists can feasibly solve more complex tasks, ask more ambitious questions, and include more sophisticated analyses in their research.

Collaboration


Dive into the Sean M. McMahon's collaboration.

Top Co-Authors

Avatar

Cory Merow

United States Fish and Wildlife Service

View shared research outputs
Top Co-Authors

Avatar

Stuart J. Davies

Smithsonian Tropical Research Institute

View shared research outputs
Top Co-Authors

Avatar

Geoffrey G. Parker

Smithsonian Environmental Research Center

View shared research outputs
Top Co-Authors

Avatar

Kristina J. Anderson-Teixeira

Smithsonian Conservation Biology Institute

View shared research outputs
Top Co-Authors

Avatar

Norman A. Bourg

Smithsonian Conservation Biology Institute

View shared research outputs
Top Co-Authors

Avatar

Richard Condit

Field Museum of Natural History

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniel J. Johnson

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge