Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stuart J. Davies is active.

Publication


Featured researches published by Stuart J. Davies.


Ecology | 2010

Functional traits and the growth?mortality trade-off in tropical trees

S. Joseph Wright; Kaoru Kitajima; Nathan J. B. Kraft; Peter B. Reich; Ian J. Wright; Daniel E. Bunker; Richard Condit; James W. Dalling; Stuart J. Davies; Sandra Díaz; Bettina M. J. Engelbrecht; Kyle E. Harms; Stephen P. Hubbell; Christian O. Marks; Maria C. Ruiz-Jaen; Cristina M. Salvador; Amy E. Zanne

A trade-off between growth and mortality rates characterizes tree species in closed canopy forests. This trade-off is maintained by inherent differences among species and spatial variation in light availability caused by canopy-opening disturbances. We evaluated conditions under which the trade-off is expressed and relationships with four key functional traits for 103 tree species from Barro Colorado Island, Panama. The trade-off is strongest for saplings for growth rates of the fastest growing individuals and mortality rates of the slowest growing individuals (r2 = 0.69), intermediate for saplings for average growth rates and overall mortality rates (r2 = 0.46), and much weaker for large trees (r2 < or = 0.10). This parallels likely levels of spatial variation in light availability, which is greatest for fast- vs. slow-growing saplings and least for large trees with foliage in the forest canopy. Inherent attributes of species contributing to the trade-off include abilities to disperse, acquire resources, grow rapidly, and tolerate shade and other stresses. There is growing interest in the possibility that functional traits might provide insight into such ecological differences and a growing consensus that seed mass (SM), leaf mass per area (LMA), wood density (WD), and maximum height (H(max)) are key traits among forest trees. Seed mass, LMA, WD, and H(max) are predicted to be small for light-demanding species with rapid growth and mortality and large for shade-tolerant species with slow growth and mortality. Six of these trait-demographic rate predictions were realized for saplings; however, with the exception of WD, the relationships were weak (r2 < 0.1 for three and r2 < 0.2 for five of the six remaining relationships). The four traits together explained 43-44% of interspecific variation in species positions on the growth-mortality trade-off; however, WD alone accounted for > 80% of the explained variation and, after WD was included, LMA and H(max) made insignificant contributions. Virtually the full range of values of SM, LMA, and H(max) occurred at all positions on the growth-mortality trade-off. Although WD provides a promising start, a successful trait-based ecology of tropical forest trees will require consideration of additional traits.


Nature | 2014

Rate of tree carbon accumulation increases continuously with tree size

Nathan L. Stephenson; Adrian J. Das; Richard Condit; Sabrina E. Russo; Patrick J. Baker; Noelle G. Beckman; David A. Coomes; Emily R. Lines; William K. Morris; Nadja Rüger; Eric A. Álvarez; C. Blundo; Sarayudh Bunyavejchewin; G. Chuyong; Stuart J. Davies; Alvaro Duque; Corneille E. N. Ewango; Olivier Flores; Jerry F. Franklin; H. R. Grau; Zhanqing Hao; Mark E. Harmon; Stephen P. Hubbell; David Kenfack; Yiching Lin; Jean-Remy Makana; A. Malizia; Lucio R. Malizia; R. J. Pabst; Nantachai Pongpattananurak

Forests are major components of the global carbon cycle, providing substantial feedback to atmospheric greenhouse gas concentrations. Our ability to understand and predict changes in the forest carbon cycle—particularly net primary productivity and carbon storage—increasingly relies on models that represent biological processes across several scales of biological organization, from tree leaves to forest stands. Yet, despite advances in our understanding of productivity at the scales of leaves and stands, no consensus exists about the nature of productivity at the scale of the individual tree, in part because we lack a broad empirical assessment of whether rates of absolute tree mass growth (and thus carbon accumulation) decrease, remain constant, or increase as trees increase in size and age. Here we present a global analysis of 403 tropical and temperate tree species, showing that for most species mass growth rate increases continuously with tree size. Thus, large, old trees do not act simply as senescent carbon reservoirs but actively fix large amounts of carbon compared to smaller trees; at the extreme, a single big tree can add the same amount of carbon to the forest within a year as is contained in an entire mid-sized tree. The apparent paradoxes of individual tree growth increasing with tree size despite declining leaf-level and stand-level productivity can be explained, respectively, by increases in a tree’s total leaf area that outpace declines in productivity per unit of leaf area and, among other factors, age-related reductions in population density. Our results resolve conflicting assumptions about the nature of tree growth, inform efforts to undertand and model forest carbon dynamics, and have additional implications for theories of resource allocation and plant senescence.


Science | 2006

The Importance of Demographic Niches to Tree Diversity

Richard Condit; Peter S. Ashton; Sarayudh Bunyavejchewin; H. S. Dattaraja; Stuart J. Davies; Shameema Esufali; Corneille E. N. Ewango; Robin B. Foster; I. A. U. N. Gunatilleke; C. V. S. Gunatilleke; Pamela Hall; Kyle E. Harms; Terese B. Hart; Consuelo Hernández; Stephen P. Hubbell; Akira Itoh; Somboon Kiratiprayoon; James V. LaFrankie; Suzanne Loo de Lao; Jean-Remy Makana; Md. Nur Supardi Noor; Abdul Rahman Kassim; Sabrina E. Russo; Raman Sukumar; Cristián Samper; Hebbalalu S. Suresh; Sylvester Tan; Sean C. Thomas; Renato Valencia; Martha Isabel Vallejo

Most ecological hypotheses about species coexistence hinge on species differences, but quantifying trait differences across species in diverse communities is often unfeasible. We examined the variation of demographic traits using a global tropical forest data set covering 4500 species in 10 large-scale tree inventories. With a hierarchical Bayesian approach, we quantified the distribution of mortality and growth rates of all tree species at each site. This allowed us to test the prediction that demographic differences facilitate species richness, as suggested by the theory that a tradeoff between high growth and high survival allows species to coexist. Contrary to the prediction, the most diverse forests had the least demographic variation. Although demographic differences may foster coexistence, they do not explain any of the 16-fold variation in tree species richness observed across the tropics.


PLOS Biology | 2008

Assessing Evidence for a Pervasive Alteration in Tropical Tree Communities

Jérôme Chave; Richard Condit; Helene C. Muller-Landau; Sean C. Thomas; Peter S. Ashton; Sarayudh Bunyavejchewin; Leonardo Co; H. S. Dattaraja; Stuart J. Davies; Shameema Esufali; Corneille E. N. Ewango; Kenneth J. Feeley; Robin B. Foster; Nimal Gunatilleke; Savitri Gunatilleke; Pamela Hall; Terese B. Hart; Consuelo Hernández; Stephen P. Hubbell; Akira Itoh; Somboon Kiratiprayoon; James V. LaFrankie; Suzanne Loo de Lao; Jean-Remy Makana; Md. Nur Supardi Noor; Abdul Rahman Kassim; Cristián Samper; Raman Sukumar; Hebbalalu S. Suresh; Sylvester Tan

In Amazonian tropical forests, recent studies have reported increases in aboveground biomass and in primary productivity, as well as shifts in plant species composition favouring fast-growing species over slow-growing ones. This pervasive alteration of mature tropical forests was attributed to global environmental change, such as an increase in atmospheric CO2 concentration, nutrient deposition, temperature, drought frequency, and/or irradiance. We used standardized, repeated measurements of over 2 million trees in ten large (16–52 ha each) forest plots on three continents to evaluate the generality of these findings across tropical forests. Aboveground biomass increased at seven of our ten plots, significantly so at four plots, and showed a large decrease at a single plot. Carbon accumulation pooled across sites was significant (+0.24 MgC ha−1 y−1, 95% confidence intervals [0.07, 0.39] MgC ha−1 y−1), but lower than reported previously for Amazonia. At three sites for which we had data for multiple census intervals, we found no concerted increase in biomass gain, in conflict with the increased productivity hypothesis. Over all ten plots, the fastest-growing quartile of species gained biomass (+0.33 [0.09, 0.55] % y−1) compared with the tree community as a whole (+0.15 % y−1); however, this significant trend was due to a single plot. Biomass of slow-growing species increased significantly when calculated over all plots (+0.21 [0.02, 0.37] % y−1), and in half of our plots when calculated individually. Our results do not support the hypothesis that fast-growing species are consistently increasing in dominance in tropical tree communities. Instead, they suggest that our plots may be simultaneously recovering from past disturbances and affected by changes in resource availability. More long-term studies are necessary to clarify the contribution of global change to the functioning of tropical forests.


New Phytologist | 2010

Potential link between plant and fungal distributions in a dipterocarp rainforest: Community and phylogenetic structure of tropical ectomycorrhizal fungi across a plant and soil ecotone

Kabir G. Peay; Peter G. Kennedy; Stuart J. Davies; Sylvester Tan; Thomas D. Bruns

*Relatively little is known about diversity or structure of tropical ectomycorrhizal communities or their roles in tropical ecosystem dynamics. In this study, we present one of the largest molecular studies to date of an ectomycorrhizal community in lowland dipterocarp rainforest. *We sampled roots from two 0.4 ha sites located across an ecotone within a 52 ha forest dynamics plot. Our plots contained > 500 tree species and > 40 species of ectomycorrhizal host plants. Fungi were identified by sequencing ribosomal RNA genes. *The community was dominated by the Russulales (30 species), Boletales (17), Agaricales (18), Thelephorales (13) and Cantharellales (12). Total species richness appeared comparable to molecular studies of temperate forests. Community structure changed across the ecotone, although it was not possible to separate the role of environmental factors vs host plant preferences. Phylogenetic analyses were consistent with a model of community assembly where habitat associations are influenced by evolutionary conservatism of functional traits within ectomycorrhizal lineages. *Because changes in the ectomycorrhizal fungal community parallel those of the tree community at this site, this study demonstrates the potential link between the distribution of tropical tree diversity and the distribution of tropical ectomycorrhizal diversity in relation to local-scale edaphic variation.


Ecology Letters | 2013

Consequences of defaunation for a tropical tree community.

Rhett D. Harrison; Sylvester Tan; Joshua B. Plotkin; Ferry Slik; Matteo Detto; Tania Brenes; Akira Itoh; Stuart J. Davies

Hunting affects a considerably greater area of the tropical forest biome than deforestation and logging combined. Often even large remote protected areas are depleted of a substantial proportion of their vertebrate fauna. However, understanding of the long-term ecological consequences of defaunation in tropical forests remains poor. Using tree census data from a large-scale plot monitored over a 15-year period since the approximate onset of intense hunting, we provide a comprehensive assessment of the immediate consequences of defaunation for a tropical tree community. Our data strongly suggest that over-hunting has engendered pervasive changes in tree population spatial structure and dynamics, leading to a consistent decline in local tree diversity over time. However, we do not find any support for suggestions that over-hunting reduces above-ground biomass or biomass accumulation rate in this forest. To maintain critical ecosystem processes in tropical forests increased efforts are required to protect and restore wildlife populations.


Journal of Ecology | 2013

Scale‐dependent relationships between tree species richness and ecosystem function in forests

Ryan A. Chisholm; Helene C. Muller-Landau; Kassim Abdul Rahman; Daniel P. Bebber; Yue Bin; Stephanie A. Bohlman; Norman A. Bourg; Joshua S. Brinks; Sarayudh Bunyavejchewin; Nathalie Butt; Hong-Lin Cao; Min Cao; Dairon Cárdenas; Li-Wan Chang; Jyh-Min Chiang; George B. Chuyong; Richard Condit; H. S. Dattaraja; Stuart J. Davies; Alvaro Duque; Christine Fletcher; Nimal Gunatilleke; Savitri Gunatilleke; Zhanqing Hao; Rhett D. Harrison; Robert W. Howe; Chang-Fu Hsieh; Stephen P. Hubbell; Akira Itoh; David Kenfack

1. The relationship between species richness and ecosystem function, as measured by productivity or biomass, is of long-standing theoretical and practical interest in ecology. This is especially true for forests, which represent a majority of global biomass, productivity and biodiversity.


Proceedings of the Royal Society B: Biological Sciences | 2012

Soil resources and topography shape local tree community structure in tropical forests

Claire A. Baldeck; Kyle E. Harms; Joseph B. Yavitt; Robert John; Benjamin L. Turner; Renato Valencia; Hugo Navarrete; Stuart J. Davies; George B. Chuyong; David Kenfack; Duncan W. Thomas; Sumedha Madawala; Nimal Gunatilleke; Savitri Gunatilleke; Sarayudh Bunyavejchewin; Somboon Kiratiprayoon; Adzmi Yaacob; M. N. N. Supardi; James W. Dalling

Both habitat filtering and dispersal limitation influence the compositional structure of forest communities, but previous studies examining the relative contributions of these processes with variation partitioning have primarily used topography to represent the influence of the environment. Here, we bring together data on both topography and soil resource variation within eight large (24–50 ha) tropical forest plots, and use variation partitioning to decompose community compositional variation into fractions explained by spatial, soil resource and topographic variables. Both soil resources and topography account for significant and approximately equal variation in tree community composition (9–34% and 5–29%, respectively), and all environmental variables together explain 13–39% of compositional variation within a plot. A large fraction of variation (19–37%) was spatially structured, yet unexplained by the environment, suggesting an important role for dispersal processes and unmeasured environmental variables. For the majority of sites, adding soil resource variables to topography nearly doubled the inferred role of habitat filtering, accounting for variation in compositional structure that would previously have been attributable to dispersal. Our results, illustrated using a new graphical depiction of community structure within these plots, demonstrate the importance of small-scale environmental variation in shaping local community structure in diverse tropical forests around the globe.


Ecology | 2012

Temporal turnover in the composition of tropical tree communities: functional determinism and phylogenetic stochasticity

Nathan G. Swenson; James C. Stegen; Stuart J. Davies; David L. Erickson; Jimena Forero-Montaña; Allen H. Hurlbert; W. John Kress; Jill Thompson; María Uriarte; S. Joseph Wright; Jess K. Zimmerman

The degree to which turnover in biological communities is structured by deterministic or stochastic factors and the identities of influential deterministic factors are fundamental, yet unresolved, questions in ecology. Answers to these questions are particularly important for projecting the fate of forests with diverse disturbance histories worldwide. To uncover the processes governing turnover we use species-level molecular phylogenies and functional trait data sets for two long-term tropical forest plots with contrasting disturbance histories: one forest is older-growth, and one was recently disturbed. Having both phylogenetic and functional information further allows us to parse out the deterministic influences of different ecological filters. With the use of null models we find that compositional turnover was random with respect to phylogeny on average, but highly nonrandom with respect to measured functional traits. Furthermore, as predicted by a deterministic assembly process, the older-growth and disturbed forests were characterized by less than and greater than expected functional turnover, respectively. These results suggest that the abiotic environment, which changes due to succession in the disturbed forest, strongly governs the temporal dynamics of disturbed and undisturbed tropical forests. Predicting future changes in the composition of disturbed and undisturbed forests may therefore be tractable when using a functional-trait-based approach.


Carbon Balance and Management | 2013

High-fidelity national carbon mapping for resource management and REDD+

Gregory P. Asner; Joseph Mascaro; Christopher Anderson; David E. Knapp; Roberta E. Martin; Ty Kennedy-Bowdoin; Michiel van Breugel; Stuart J. Davies; Jefferson S. Hall; Helene C. Muller-Landau; Catherine Potvin; Wayne P. Sousa; S. Joseph Wright; Eldredge Bermingham

BackgroundHigh fidelity carbon mapping has the potential to greatly advance national resource management and to encourage international action toward climate change mitigation. However, carbon inventories based on field plots alone cannot capture the heterogeneity of carbon stocks, and thus remote sensing-assisted approaches are critically important to carbon mapping at regional to global scales. We advanced a high-resolution, national-scale carbon mapping approach applied to the Republic of Panama – one of the first UN REDD + partner countries.ResultsIntegrating measurements of vegetation structure collected by airborne Light Detection and Ranging (LiDAR) with field inventory plots, we report LiDAR-estimated aboveground carbon stock errors of ~10% on any 1-ha land parcel across a wide range of ecological conditions. Critically, this shows that LiDAR provides a highly reliable replacement for inventory plots in areas lacking field data, both in humid tropical forests and among drier tropical vegetation types. We then scale up a systematically aligned LiDAR sampling of Panama using satellite data on topography, rainfall, and vegetation cover to model carbon stocks at 1-ha resolution with estimated average pixel-level uncertainty of 20.5 Mg C ha-1 nationwide.ConclusionsThe national carbon map revealed strong abiotic and human controls over Panamanian carbon stocks, and the new level of detail with estimated uncertainties for every individual hectare in the country sets Panama at the forefront in high-resolution ecosystem management. With this repeatable approach, carbon resource decision-making can be made on a geospatially explicit basis, enhancing human welfare and environmental protection.

Collaboration


Dive into the Stuart J. Davies's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Richard Condit

Field Museum of Natural History

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David Kenfack

Smithsonian Tropical Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Helene C. Muller-Landau

Smithsonian Tropical Research Institute

View shared research outputs
Top Co-Authors

Avatar

James V. LaFrankie

Smithsonian Tropical Research Institute

View shared research outputs
Top Co-Authors

Avatar

Kyle E. Harms

Louisiana State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge